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ABSTRACT

In this thesis, we study networked systems composed ofaléstime systems interacting over
discrete-time networks. These systems are emerging in @pplcation areas and require new dis-
tributed control and estimation design methodologies. t\agsting approaches represent networked
system models by structured system models (systems witttgted state-space or input-output rep-
resentations) assuming a complete equivalence betweeweohmodels. In this thesis, we carefully
analyze the connection between these two models and stedypiiditions under which networked sys-
tems can be viewed as structured systems, and vice versmugh, networked systems are shown to be
equivalent to structured systems in general, we show thadetimg the networked systems as systems
with structured transfer function matrices is inappragriar problems which require stabilizability and
detectability of the designed networked system. This istduge lack of constructive proofs in liter-
ature to obtain a stabilizable and detectable networke@isysorresponding to an unstable structured
transfer function matrix. This important observation skaat the theory developed for designing
distributed controllers using transfer function appragctwhere the designed transfer functions can in
general be unstable) may not provide a stabilizing netwbdaatroller.

We refer to the property of realizing a structured transterction matrix as a stabilizable and de-
tectable networked system bgtwork realizability Although this problem is mostly open and appears
to be difficult, we partially answer this problem by provigia constructive proof to show that stable
structured transfer function matrices are always netweakizable.

Based on this development, we consider the problem of diegigtabilizing networked controllers
for a given networked plant. As transfer function approaci® not suitable, we develop a state-space
approach using classical Youla-KuCera parameterizagchniques to parameterize all internally sta-
bilizing networked controllers for the given networked milaThis formulation allows us to pose the
problem of finding stabilizing networked controllers as artanstrained convex optimization prob-

lem, which can be solved using standard techniques. Thisulation allows us to solve the optimal
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networkedH, and H., control problems while ensuring that the solution is a $t@bg networked
controller that can be implemented as sub-systems integagver the given network.

It turns out that the optimal stabilizing networked conrerd can have a large order as they trade off
complexity for the lack of complete communication graphe Diptimal solutions provide performance
limitations of the controllers when constrained to be nek&d. In order to obtain networked controllers
with order comparable to that of the networked plant, we jl@a methodology to obtain full-order
internally stabilizing networked controllers using lineaatrix inequalities. This methodology being
based on a sufficiency condition, assures only sub-optigliabfder stabilizing networked controllers.

Next, we consider the problem of designing a networked egtinfor a given networked plant. We
express this problem as a networked control problem for aivalgnt plant model and apply our net-
worked controller design approach. We provide the paratizateon of all stable networked estimators
and the networked estimation problem is expressed as amsinamed convex optimization problem
that can be solved using standard techniques.

Finally, we consider the networked systems over any gemkaialy networks. The results previ-
ously developed for systems over zero-delay networks aemégd to the case of systems over general
delay networks. We conclude the thesis with a look at futesearch directions - the development of
model reduction techniques for networked systems, thdojgwvent of distributed design methods, and
the extension of our design methodology to include netwookleh uncertainties and other distributed

performance objectives.
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CHAPTER 1. Introduction

With increasing number of applications in the field of netkemt or spatially interconnected sys-
tems, there has been a great surge in research towards désigfworked controllers for such systems.
One of the main objectives of this research is to find netwiid@ntrollers that satisfying the desired
performance criteria and can also be implemented in alolis&d fashion over the same network as that
of the plant.

In this thesis, we solve the optimal networketh and 7, control problems for a class of net-
worked systems composed of heterogeneous sub-systemectintg over a given network. In the net-
worked system model we consider, only local informatiorasged from a sub-system to it's immediate
neighbors over the network in each time instant. The cdetrid also networked and uses the same
interconnection as the networked plant. We restrict o@nditin to linear time-invariant discrete-time
systems.

The literature on decentralized, distributed, and netedrgontrol is vast, and it is difficult to pro-
vide a thorough review. In the classical decentralized robproblem, the plant is generally not inter-
connected and the controller is made of isolated sub-citersahat use only local measurements and
act only on local actuators. These problems are notorichesfyg (for example the Witsenhausen prob-
lem in [1]) and have motivated the search for controller structuteeradhan just diagonal one249].

In particular, the availability of communication networkows controllers to exchange informa-
tion over the network, and result in structured systems istard with the available communication
network. However, these problems are also usually difficutolve when the underlying networks for
the plant and controller are generic. Important exceptaresobtained for certain networked plant and
controller models. Looking for and identifying convenigréearchable structures, in the system state-
space or input-output representation, has been the focomstf research in networked or distributed

control problems. Examples when network constraints apogad on the controller transfer function
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matrix include the cases of spatially invariant systes(-12], systems with triangular and band
structures %, 6], symmetrically interconnected systermis3], dynamically coupled system$9]| poset-
causal systemslfl] and in the case of plant and controller structures satigfyjuadratic invariance
property B, 15]. These results provide controllers with transfer funesigatisfying linear constraints
imposed by the underlying network. Examples where networstraints are imposed on the controller
state-space matrices include relatively smaller numbeasés like networked systems over acyclic net-
works [16], identical dynamically coupled diagonalizable systetii§ fnd heterogeneous sub-systems
connected over arbitrary undirected graphs considered &y Due to the finite-dimensionality of the
state-space approaches, the controllers obtained wittorieconstraints imposed on the state-space
matrices are usually sub-optimal.

In the following example, we will show that a large part of theory developed for distributed
controller design does not truly provide a internally dialvig distributed controller, i.e. a state-space
representation of a distributed controller that makes thtesspace dynamics of the closed-loop system

asymptotically stable.

1.1 Motivational example

Consider the following dynamically coupled syst@nbased on the model considered 9 pf the
form

x1(K+ 1) = Ay1x1 (K) + AgoXo(K) 4+ Biwi (K) + Byuy (K),

Xo(K+1) = Ag1xa (K) 4 Agoxa(K) + Baws (K) + Boua (K),

xa(k+ 1) = Agoxa(K) + Azaxa(K) 4 Baws(K) 4 Baua (),
71 (k) = C11x1 (K) + Dawy (K),
2>(K) = Corxa(K) + Do (K), 1.1)
z3(K) = Caoxa(k) + Daws(k),
y1(K) = C11x1(K) + C12%2(K) 4+ Dywy (K),
ya2(K) = Ca1x(K) + Caxa(K) 4+ Dawa(K),

ya(K) = Caoxa(K) 4 Caaxa(K) + Daws(K).
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wherex; (k), wi (K), z (k), ui(k) andy; (k) denote parts of the state vector, exogenous input vectpr; re
lated output vector, control input vector and the measuntmetput vector for all. Now, consider the

problem of finding finite-dimensional internally stabihigi controllerK of the form

X5 (K+1) = AT (K) -+ AT (K) + BEya (),

X5 (K+1) = A (K) + Agx (K) + BSya(K),

X5 (k+ 1) = AEE (K) + ASE (k) + B ys(K), 12)
Ur (K) = C{pxd (K) +CPox (k) + DY ya (K),
Uz (K) = C5x] (K) + C3px5 (K) + D5 Ya(K),
U3 (k) = CEX5 (K) + C33x5 (k) + D5ya(K),

wherexX (k) denote parts of the state-vector for controHefor all i. LetS denote the set of controllers
with dynamics given in1.2). So, the problem can be posed as a searctKferS that minimizes
an objective function and makes the feedback interconmecif G and K asymptotically stable. In
literature, such problems were solved by searching fosfearfunctions oK which correspond to the
state-space equations ih.2). In this case, the transfer functions correspondindLtd) (will be of the

form
Ul(Z) H]_]_(Z) Z_lH]_g(Z) 0 Y]_(Z)

K@) : |Ux2)| = |zHo(2) H2l(2) 0 Ya(2) | 5 (1.3)
Us(2) Z2H31(z2) Z 'H32(2) Has(2)| |Y3(2)
whereH;;(z) is a real rational proper transfer function matrix for iafind j. Let the set of transfer
function matrices of the formil(3) be represented h§;¢. Note that the sef;; can easily be described
in terms of sparsity and delay constraints which are lineastraints. Let the transfer function fGrin

(1.1) be written in the form

G(z): Z(Z) _ G]_]_(Z) G12(Z) W(Z) (1.4)
Y(Z) Gz]_(Z) Gzz(Z) U(Z)

whereZ(z) := [Z1(2),Z5(z),Z4(z)]" and similarly forY(z), W(z) andU (z). So,Gz»(z) is the mapping
from U (2) to Y (z) which can be obtained froni(2).
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1.1.1 Quadratic invariance

Definition 1. A set7 of transfer function matrices is said to lpeadratically invariantinder Gy(z) if

K(2)G22(2)K(z) € T for every Kz) € 7.

In [8], the authors showed that the problem of searchindf@) < S;+ is convex ifS;s is quadrat-
ically invariant undeiGyz(z). In our case, simple algebraic operations show &afs in fact quadrat-
ically invariant undeiGyz(2z) in (1.4). Then, B] shows that if there exists a stable stabilizing nominal
controller Knom € S, then Zames’ parameterizatiof9) can be used to parameterize the set of sta-
bilizing controllers inS;t using a parameted(z) € Si¢ which is stable. This parameterization allows
them to solve for an optimal stabilizing controller .

Since our objective is to find an internally stabilizing aatier in S which is described by structural
constraints on the state-space matricek obne needs to find a stabilizing state-space realizatidh in
for elements inS;s. We refer to this problem of realizing a structured tran$fi@iction as a stabilizable
and detectable state-space model with a particular spatsiicture astructured realization This is
still an open problem for a general class of systems. Duectdsitk of results on structured realization
in literature, the transfer function approaches that atbow to find optimal stabilizing controllers &
cannot directly be extended to finding optimal stabilizimgtzollers inS.

This is the main focus in this thesis. We propose to develoat@-space approach to make the
search for stabilizing controllers i a convex problem. Instead of re-deriving the results8pfir
a state-space form, which is based on quadratic invariaht¢emsfer function matrices, we found
that a state-space formulation of Youla-Kucera pararietiéon (which is based on linear fractional
transformations of state-space representations) is smékd for our problem. We studyetworked
systemsand show that they can be expressed as elements of sets ofrhé&f Then, we study the
relationship betwee§ andS;s. We show that a stable transfer functiondn can have a stable state-
space realization i§. Using this result, we use a state-space Youla-KuCeraypetaization in 20] to
parameterize the internally stabilizing controllersdnn terms of a stable paramet€z) € Si¢. This
approach allows us to not only search for internally staini§j controllers in a convex fashion but also
assures that the internally stabilizing controller isSinAlso, note that Youla parameterization is based

on an observer-based nominal stabilizing controller (Wimieed not be a stable system) while Zames’
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parameterization used iB][requires a stable stabilizing nominal controller (whieimde more difficult

to obtain).

1.2 Organization of thesis

This thesis is organized in the following form. In Chap®ewe introduce the notation and provide
background information related to graph theory, lineaebtg and systems theory that will be used
in the later parts of the thesis. In Chap8&mwe introduce the networked systems that are considered
in the thesis. We describe the dynamics of networked systeimg the sub-system dynamics and
the network they are interacting on. We first study systenes aero-delay networks and show that
such networked systems can be described using structuadsgtace or structured transfer function
matrix representations. We point out the problem of netweekizability that has not been addressed
thoroughly in literature.

In Chapter4, we consider the problem of designing a networked contréiea networked plant
when both the plant and controller are constrained to be theisame zero-delay network. Using
the relationship between networked systems and structysigms, we extend the classical Youla-
KucCera parameterization to describe the set of all intgrrsabilizing networked controllers for a
given networked plant using a stable networked paranm@tetUsing this parameterization, we show
that theH, and’H, networked control problems are in fact convex optimizapooblems. In the case
of H» networked control problem, the constrained convex option problem is transformed into
an unconstrained convex optimization problem that can bedaasily to get the optimal networked
controller.

Since the optimal networked controllers can possibly haleege order, we provide methodolo-
gies to design full-order internally stabilizing netwodkeontrollers for the given networked plant, in
Chapter5. In Chapter6, we consider the networked estimation problem where eabtsygstem of
the networked estimatro estimates the states of the comdspy sub-system of the plant be exchang-
ing information with other sub-systems of the estimator. Mise the networked estimation problem
as an equivalent networked control problem and solve itgupieviously developed techniques from

Chapterd.
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In Chapter?7, we extend the results for systems over zer-delay netwaiksr( in chaptei3 and
Chapterd) to systems over any general delay networks. The delay gbdftator allows us to represent
systems over delay networks appropriately and allows usedhe same framework that was developed
for systems over zero-delay networks. Some numerical elengpe given in Chaptéto explain the

main results provided in the thesis. Finally, we conclude ttiesis and provide directions for future

work in Chaptef.
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CHAPTER 2. Preliminaries and Notation

In order to keep this thesis self-contained, we provide rofte notation used in this thesis through
this chapter.

The set of natural numbeid, 2, ...} is represented bi. Including O, the sef0,1,2,...} is repre-
sented byNp. The sets of real numbers and complex numbers are denotedabgC. The open unit
disc inC is denoted byD given by

D={AeC:|A| <1},

and it's closure and boundary are represente@lamda]]), respectively, where

D={AeC:[A|<1}, ID={AecC:|A|=1}.

2.1 Graph Theory

Networked systems are best described using graph-theo@ttion. Adirected graphor digraph
is a pairG = (V, &) of sets where is thevertex-setvhose elements anerticesor nodes and€ C 1?
is thedirected edge-sethose elements are thirected edgesr arcs We also us&/(G) andE(G) to
denote the vertex and edge setgjofV(G)| and|E(G)| are used to denote the number of vertices and
directed edges present in the digraphrespectively. Let, = [V (G)| andne = |E(G)|. In order to refer
to the vertices and directed edges in a digrgplwe assume that the verticesirand& are numbered
as{vi,Vo,...,Vn} and{er, e,...,en}, respectively. Given a digraph, through out this thesisassime
that the vertices and directed edges are numbered in sondeoficer.

An ordered paie = (v;,Vj) represents a directed edge from veneto vertexvj. The first vertex
v; in the ordered paifv;,v;) is called it'stail and the second vertex is it's head A weighted digraph

is one in which a real value is associated with each edge iedge-set calledostor weightof the
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edge.W(e& ) is used to denote the weight of an edge- £. We also use a termnit-weight digraphto
describe a digraph witW(e,) =1 foralle € £.

A walkfrom vertexv; tov; ong is an alternating sequence of vertices and directed edggsying
atv; and ending avj, where each edge has the preceding vertex as it’s tail aneeding vertex as it's
head. To simplify the notation, a walk fromto v; is represented by only a sequence of vertigs-=
;i (0) ;i (1) . ... ;i (r) wherem;i (0) = vi, 1 (r) = v; and (75 (K), i (k+ 1)) e EVke {0,1,...,r —1}.
A pathis a walk where all the vertices are distintengthof a walk is defined as the number of edges
in the walk. Ashortest pattfrom vertexy to vertexv; is defined as a path from to v; with shortest
length. Let the shortest path length from verteto vertexv; be denoted by;i. In the case of weighted
digraphsweightof a walk is defined as the sum of the weights of all the edgdsaimialk. Aminimum-
weight pathfrom vertexv; to vertexv; is defined as a path from to v; with least weight. Let the weight
of minimum-weight path from vertey to vertexv; be denoted byVj;.

Given a digraplg = (V, ), the unique binary matrices (assuming the vertices andseaigenum-
bered in a fixed ordetjl(G) and.An(G) (for all me Np) of sizeny x n, are defined as

1 ifi=jor(vj,v)e€

[A(G)]ij = (2.1)
0 otherwise

1 ifi=j orthere exists a directed path from vertgx
[Am(9)]ij == to vertexv; of length at mosmn (2.2)

0 otherwise

Since the longest path in a digraph withvertices isn, — 1, we note thafdy(G) = An,—1(G) for all
k>n,—1. From @.2), it is also easy to see that the shortest path lehgfrom vertexv; to vertexy
is given by

0 ifi=]
lij = (2.3)
inf{me No: [Am(G)]ij # 0} otherwise

Note thatl;; = oo if there is no path fronv; to v;, j #1i.
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Define directed neighborhood index sets for each vertgiwven by

N ={ilvj,v) € €}
(2.4)
N ={jl(vi,vj) € £}

Thus, the set of vertices that have directed edges to vertext is given by{v } ... Similarly, the

set of vertices that have directed edges from veviéx £ is given by{v; } . N

2.2 Linear algebra and Matrices

We refer to a column-vector agector To make representations compact, we use the notation
vert[x];c; andhor[x];., for vertical and horizontal concatenation of vectors ormoas {x; }icz, of
appropriate dimension, whefeis an index set. Lejxjli jez represent a matrix formed by arranging

the sub-matriceqx;; }i ; asvert[hor|x;] Also, letdiag[x];.; denote the matrix formed by

iGI]iEI'

arranging the vectors or matric¢s; }icz in a block diagonal fashion and the remaining entries being

zeros. Sometimes, if the index geequals{1,...,n}, then we will not explicitly mention the index set.
Rankof a matrixA is defined as the maximum number of linearly independentnaguor rows

of A and is represented bwank (A). A matrix A is said to havdull rank if a has a rank as large as

possible. A square matri& is said to beSchur-stablaf all eigenvalues are inside the unit circle, in

other words,(zl — A) has full rank for anyz e C\D. A’ is used to denote the transpose of a maXix

Tr (A) denotes the trace of a square mafixA~! denotes the inverse of a non-singular square mAtrix

A symmetric matrixQ is said to bgpositive definite (semi-definitejf vV Qv > 0(> 0) for any non-zero

vectorv. We writeQ > 0 (Q > 0) to denote thaQ is positive definite (semi-definitelQ > P (Q > P)

meanQ—P >0 (Q—P > 0).
Lemma 1. For any square matrix A, if A- A’ = 0, then A is non-singular.

Proof. We prove this using contradiction. Givén+ A’ = 0, assume thah is singular. TherA has an
eigenvalue at 0. Letdenote the right eigenvector Afcorresponding to eigenvalue 0, iAv= 0. First
note thatA is a non-zero matrix sinc&+ A’ = 0. Thus,v is a non-zero eigenvector. For this non-zero

v, we can see that(A+ A')v = VAv+ VA'v = 0 which contradicts the hypothesis tifat A’ - 0. O
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If Ac R™"andB € RP*9, theKronecker product & B € R™P*" s defined as

AiB -+ AnB
ARB:=| : .. i |. (2.5)

AmB -+ AmnB

Given a matrixA = [a1..an ] € C™", where{a }i denote the columns &, we associate a vector
veqA) = vert[a]; € C™ (2.6)

which is a vector formed by vertically concatenating theuomhs of matrixA. Definevec™!(-) as the
inverse operation of theeq-) such thatvec*(veqA)) = A. When required, we shall udefor an
identity matrix and O for a zero matrix of appropriate size.

In this paper, we will come across block matrices that areemgdof smaller sub-matrices. These
matrices are best described in terms of their sparsitytstres. We say a block matrik= [Ajj]; je1,....n}
is structured according t@n n x n binary matrixJ if the sub-matrices\; is a zero matrix whenever
Jij = 0. The dimensions of the sub-matricg4; }; ; are described using two integer-valued vectors as
follows. LetP, = (ag,...,a,) andPp = (b, ...,b,) be twon—tuples witha; andb; being integers for
alli € {1,...,n}. Then, matrixA is said to bepartitioned according tqPa, Pp) if the sub-matrixA;;
has dimensiong; x b; Vi, j. This definition of partitioning is easily extended to theeaf vectors too.
A vectorx is said to bepartitioned according t@P, if it can be written asert[xiJic(1,.. y Wherex; is a

real vector of sizey for alli € {1,...,n}. We say thaP; is the partition for the vectax.

Definition 2. Given an nx n binary matrix J and rtuplesP,, Py, let J,Pa, Pp) denote the set of

matrices that are partitioned according {®,, Pp) and structured according to J.

For example, according to the above definitions, the folhgarnatrix

112 1|0 0 O

3|1 2{0 0 O
A= S S(J,Pa,pb)
2(2 10 0 O

0|1 3/2 1 2
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The following lemmas are used in the later part of this papetescribe properties of state-space

and input-output representations of interconnected Byste

Remark 1. Given n-tuplesP,, Py, P, let the matrices E and F be partitioned according(#y, Pp)
and (Py, Pc), respectively. Based on block matrix multiplication ruléee product EF is partitioned
n
according to(Pa, Pc) and [EF]ij = Z EiF«; where E; and F; are the sub-matrices of E and F,
K=1

respectively.

Lemma 2. Let J be an nx n binary matrix andP,, Py, P, Pq be n-tuples. Given matrices E
S(1,Pa, Po), F € SJ,Pp,Pc) and Ge S(I,Pc,Pq), where | is an nx n identity matrix, the product
EFG e S(J,Pa, Pq).

Proof. From the hypothesis, we see tliat [Eij]i.j’ F= [F”']i.j andG = [Gij]i,j whereEij andGij are
zero matrices whens# j while F; = 0 whenJ;; = 0. From the Remark, it is easy to see th&FGis
a block matrix which is partitioned according ®a, Pq). Thus, we can writee FG = [H;;|; j in terms

of some sub-matriceld;; which have dimension®,(i) x Py(j) and
n n
Hj=5% > EkFmGnmj
k_lm:l (2'7)
= Z Eii Imej EIIFijGJj
sinceEj = 0Vi # kandGpj = 0Vm# j. From @.7), we see thail;; = 0 wheneved;; = 0 sinceF; =0

wheneverJ;; = 0. Thus,EFGis structured according tband partitioned according {®a, Pq). O

Lemma 3. Given an R—tuple P, and a digraphg = (V,€) with the binary matricesA(G) and
Am(G) (for all m € Np) given by(2.1) and (2.2), let {A;}; be a sequence of matrices such thaeA
m
S(A(G),Pa, Pa) for all i. Then By = [ A € S(Am(G), Pa, Pa) for all m.
K=1

Proof. From the definition ofAdm(G) in (2.2), we can see thatl;(G) = A(G). Thus, from hypothesis,
we know thatB; = Ay € S(A1(G), Pa, Pa)-
Now, assume thaBy, = ﬁAk € S(Am(G), Pa, Pa) for somem = p. From Remarkl, we can see
thatBp 1 = BpAp;1 is partitioned according t0P,, Pa) and the sub-matricgB,1]ij are given by
n

[Bpralij Z plik[Ap+1]kj
=]
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If there is no path from vertey; to vertexv; of length at mostp + 1, then for allv, € V, either
there is no path fromy to v; of length at mosp or there is no directed edge fromto w. Thus, either
[Bplik Or [Ap+1]kj are zero-matrices for allwhen[Ap,1(G)]ij = 0. Thus,[Bpy1]ij is a zero matrix when
[Api1(9)lij = 0, which implies thaBp,1 € S(Ap;+1(G), Pa, Pa)-

Thus, the given statement is true by mathematical induction O

2.3 System theory

A systemP is represented by a quadrugke, B,C,D) or

X(k+1) _ A B [x(k) 2.8)
y(k) C Dj |u(k)
in terms of it's state-space matricAsB, C andD; and state, input and output vectoi), u(k) and
y(K), respectively. A state-space representatidyB,C, D) is asymptotically stablé@ A is Schur-stable.
(A,B,C,D) is said tostabilizableif [z1-A B8] has full rank for anyz € (C\]ﬁ. (A,B,C,D) is said to
detectablef [#2*] has full rank for any € C\D.

Given a state-space representatiénB,C, D), the unique transfer function matrix corresponding to

the systenP is given by thez—transform of it's impulse response
P(z) :=tf(P):=D+ Z)CAsz—k—1 (2.9)
K=
which is also concisely represented by

A|B
P(2) :=
C|D
The Kronecker product in2(5) can also be extended to transfer function matrices. Thaydei a

real-rational transfer functioR(z) is given by
delay(P(z)) = inf{me Np: Zirgosz(z) # 0} (2.10)
Given two systems& andK in terms of their state-space representations
x(k+1)| |A By Bz | |x(k)
G:| zk) | |Ci D11 Diof [wk)|, K: D _ | A B %l ;o (211)

U(k) CK DK y(k)
0 u(k)
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thelower linear fractional transformatiofLFT) of G andK is given by the Redheffer star-product

X(k+ 1) A+ BoDkCo B.Ck B1+ B2Dk D21 X(k)
Ift (G, K) DXk (k-|— 1) = Bk Co Ak Bk D21 XK(k) . (2.12)
z(k) C1+D12DkCy; D12Ck D11+ D12DkD21| | w(k)

In the case when the two systems are given in terms of theisfeafunction matrice&(z) andK(z)
whereG(z) is the mapping fron{‘l’f((l'f))] to [;Em while K (z) is the mapping frony(k) to u(k), we can

partition the transfer function matri®(z) in terms 0fG11(2), G12(2), G21(z) andGyy(z) as

G(Z): Gll(Z) G12(Z) 7
G21(Z) Gzz(Z)

whereGy;(2) is the mapping fronu(k) to y(k). Then the LFT 0fG(z) andK(z) is given by
It (G(2),K(2)) := G11(2) + G12(2)K(2) (I — G22(2)K(2)) 1G1(2). (2.13)

whenGgyz(o0) = 0 (i.e. Gpp(2) is strictly proper).

A discrete-time system is said to beunded-input bounded-output (BIBO) stabil¢he impulse
response of the system is absolutely summable. It is knoatretkystents is BIBO stable if and only
if all the poles of it's transfer function matri®(z) are inside the unit circle.

A discrete-time syster@ with a state-space representati@yB,C,D) is said to benternally stable
or asymptotically stablé Ais Schur-stable. It is known that@ = (A, B,C,D) is asymptotically stable,
thentf(G) is BIBO stable but not viceversa.

We say that a systeid stabilizesa systeniG (in (2.12)) if Ift (G,K) is BIBO stable andnternally
stabilizes Gf Ift (G,K) is asymptotically stable.

Given a discrete-time syste@® the H, norm of the system is given by

6@, \/ o | T(GE9)G (@) de) 2.1

whereG(z) is the transfer function matrix @. If a state-space realization Gfis given by(A,B,C,D),

then thel{, norm is given by

|G|, = +/Tr (DD’ +CML), (2.15)
whereM. > 0 is the controllability grammian that solves the discratee Lyapunov (Stein) equation

AMA' — M. + BB = 0. (2.16)
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The solution of the Stein equation is given by
Mc = Z]AkBB’(A’)k. (2.17)
K=

Given a discrete-time syste@with a transfer function matrig(z), the’H., norm of the system is
given by

IG(2)]l,, = sup a(G(€)) (2.18)
6<€[0,m

whereg (-) is the maximum singular value function.
Let R, denote the set of real-rational proper transfer functiotrices, Rs, denote the set of real-

rational strictly-proper transfer function matrices &, denote the set of real-rational proper stable

transfer function matrices.
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CHAPTER 3. Networked systems

In this chapter, we introduce the systems that are considerihis thesis.

Definition 3. A group of plants or sub-systems interacting over a netwstkimed as aetworkedor

interconnectedystem.

From Definition3, it can be seen that a networked system is characterizedelgytimamics of the
sub-systems and the properties of the network on which treeinteracting. In this thesis, we consider
only discrete-time sub-systems interacting over disetigte networks. We model such systems using
system theory and graph theory by making further assunmgptionthe properties of the sub-systems

and the interaction network.

3.1 Discrete-time networked system

Definition 4. A networked system made of n discrete-time finite-dimealsioear time-invariant (DT
FDLTI) sub-systems interacting over a discrete-time netusreferred to as aliscrete-time networked

system

The dynamics of a discrete-time networked system dependieodynamics of the sub-systems

and the network interconnection.
Assumption 1. The clock for all the n sub-systems and the network linksssrasd to be the same.

Let {P }icqs,..ny denote then sub-systems. Lex(k) be the local state vectau;(k) the local input
vector, y; (k) the local output vector corresponding to the sub-sysBemLet n,i(k) be the message
vector transmitted from sub-systePnto P, at the time instank and ¢j; (k) be the message received by

P from P; at time instank. Lett;; denote the smallest discrete time-delay over the netwokkftom
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sub-systen; to . Then the considered state-space representation (assafediinimal) forR is of

the form
X(k+1) =Axi(K) +Blu (k) + 5 B (K
j€lNG)
yi(K) = Cixi (k) +Dy"ui (k) + DI Zij (k) (3.1)
jelN(i)

Nri (K) =C/Ixi (k) V'r € OUT(i)

and the network dynamics is of the form
Gij (k) = mij(k—tij) ¥V j € IN(i), (3.2)

where INi), OUT(i) denote the index sets for sub-systems that transmit infaam#o P, and receive
from B, respectively, i.e.j € IN(i) means that there is a network link frofyp to B and j € OUT(i)
means there is a network link froR to P;. Combining 8.1) and @.2), the collective dynamics of the
networked syster® made of{PR, }; is given by

X (k+1) = Aixi (k) + Bi'ui (k) + Aijxj(k—tij)

J€IN() Vie{1,...,n} (3.3)

yi(K) = CI% (k) + DY"ui (k) + Cxj(k—t)
jING)

whereAj; := BﬁC,’J7 andCy = DYZC’7 foralli, j.

3.1.1 Graphical representation of discrete-time networkd systems

The dynamical structure of a discrete-time networked syqf®3) made ofn sub-systems (with
dynamics given by3.1)) interacting over a discrete-time netwok ?) can be better represented using
a weighted digraph. The graph-theoretic notation makesdfations more concise and makes it easier
to understand the structure of the model.

First, we shall see how to identify the weighted digrapk- (V,£) corresponding to the discrete-
time networked system. The vertex-3etis defined to represent thresub-systems such that vertex
v; corresponds to the sub-systdinfor all i € {1,...,n}. Thus, the number of verticey, = n. The
directed edge-sef is defined based on the interactions between the sub-syst@nairected edge

& = (vj,v) € € if there is a directed network link from sub-systétrto R. Based on the smallest delay
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tij corresponding to the link frorR; to B, we assign a weight

W((vj,w)) =tij+1 YV (vj,v) €. (3.4)
UQ(k)
n32(k)
k
G (k) P a(R)
uy (k) i i) uz (k) vy
M L 5
1 1
P 271 » D3
n21(k) Cia(k) C32(k) 2
] (k) ' me b
(a) A Networked system (b) Weighted digraph represent-

ing the underlying network

Figure 3.1 A simple example of a discrete-time networkedesygsnodel made of 3 sub-systems inter-
acting over a discrete-time network.

Note that this representation can replace multiple comaatioin links from sub-systerR; to R
using just one weighted edge & The weight assignment ir84) can be better appreciated once
we study how an inputi; (k) at sub-systeni®; affects the outpuy;i(k) at R in (3.3). By defining the
vertices, directed edges and the edge weights, we have higghpepresentation of the discrete-time
network and the digrap§ is said torepresentthe network interconnection. In terms of the graphical

representatio, a discrete-time networked system is given by the stateespquations of sub-systems

X(k+1) = A (K +Bluk)+ 5 Bk

JeN™
yi(k) =Cixi(l) + DMk + Y DI (k) (3.5)
JENT
Nri(K) =CIxi (k) Vr € N
and the network interconnection equations given by
Gij (K) = mij (k=W((vj,vi)) + 1) V (v}, v) €, (3.6)
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Definition 5. A discrete-time networked system P with sub-system dysagiven by(3.5), satisfying
the network interconnection equations given(By) is referred to as astrictly causal interaction of
discrete-time FDLTI sub-systems over a discrete-time agtwepresented by a digragh In short, we

say “strictly causal interaction over a digrap@”.

3.1.2 Networked systems over zero-delay network

First, we study the case of zero-delay network wttgre- O for all network links. An extension
to a more general delay network will be addressed in Chaptéinder the zero-delay condition, the
represented digraph corresponding to the network is a unit-weight digraph,Wge) = 1 for allec £.
This case is studied separately because of the emergeringptd sparsity structures (we shall show this
in the next section) in both state-space matrices and gafisiction matrices of the networked systems.
In a general case, the sparsity structures of the statexspatrices are difficult to describe while the
transfer function matrices still show some sparsity andystructures. But the ideas developed for the
zero-delay case can be extended to a general case with appeapodifications. Under the zero-delay

network condition, 8.6) becomes

Gij (k) = nij (k) ¥ (vj,vi) € €. (3.7)
uz(k)
132(k)
CZl(k)= P (k)
l Y2 (k) v2
u (k) 2 st O
i | :
1
Py > P3 1
21 (k) Cia(k) C32(k)
iy1(k') lyfs(k) 91 93
(a) Networked system (b) Unit-weight digraph rep-

resenting the underlying zero-
delay network

Figure 3.2 A simple example of a discrete-time networkedesgsnodel made of 3 sub-systems inter-
acting over a zero-delay network represented by a unithieigraph.
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Remark 2. Note that zero-delay network refers to the delay on the mitlirk. It does not refer to the
delay of the transfer function from input (k) at sub-system;Ro output y(k) at sub-system; PWe will

later see through Remarkthat the delay from p(k) to (k) is equal to {; given by(2.3).

By combining the equations3(5) and @.7), we can eliminate the network variablég (k) and

nri (K), and write the state-space equations for the sub-systems as

xi(k+1) = Aixi (k) +Bilui (k) + 5 Ajxj(k)
JeENT

yi(k) =Cixi(k) +DY"ui(k) + 5 Cixj(k),
JeNT™

Vie{l,...,nl (3.8)

whereAj := BﬁCi'} andCy; := DiijCi'}. Let P denote the discrete-time networked system defined by

(3.5 and @.7). Then the state-space equation$oin (3.8) can also be concisely presented as

X(k+1) _ A By [x(k) 3.9)
y(K) Cy Dy |u(k)
whereA := [Ajj]i j, By := diag[B{/;, C, := [CY}i j andDy, := diag[D;"}; (such thatA;; andC}; are zero
matrices wher(v;,Vvi) ¢ £ andi # j) denote the structured state-space matrigés; := vert[x (K)];,
u(k) := vert[u;(k)]; andy(k) := vert]y;(k)]; denote the complete state, input and output vectors corre-

sponding to the networked systd?rand be partitioned according 1, P, andPy, respectively. From

(3.8), and the structure of(k), u(k) andy(k), we can see that (using definiti@

A € S(A(g)7PXaPX)a BU € S(I 7PX7PU)a
(3.10)

CY € S(A(g)>Py7PX)v DYU € S(I 773y,73u),

whereA(G) is given by @.1) andl is ann x n identity matrix.

Remark 3. Note that the discrete-time networked systems considertisi thesis (througl3.8)) are
different from the networked systems consideredlB} yvhere the sub-systems were assumed to be
instantaneous relays, i.e. any information at a sub-sy$®eisassumed to be passed on to any other
sub-system jRhat has a directed path to; Rof any lenght) in next time instant. Our model is based
on the networked system considered9hwhere each sub-system can send the local information only
to immediate directed neighbors in the next time instantusTlour model assures that the network
topology exactly describes the information flow from oneentmdanother node with time, unlike the

model.in [16].
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3.2 Structured systems

In this Section, we look at systems whose state-space amfdrgunction matrices follow sparsity
and delay structures. We will later study how structured retvorked systems are related. Based on

this relationship, we use structured systems to repredesign and search for networked systems

Definition 6. Given a digraphG = (V,£) with n vertices and atuplesP, P, and Py; let A(G) be
the unique binary matrix given b.1). We defines (G, Py, Py, Pu) as the set of discrete-time systems
with a state-space representatiof, By,Cy, Dyy) such that Ac S(A(G), Px, Px), Bu € S(I,Px, Pu), Gy €
S(A(G), Py, Px) and Dy, € S(1, Py, Pu).

Also defineS (G, Py, Pu) = UpennS(G, Px, Py, Pu).

Note that the state-space representatiorss (i@, Px, Py, Pu) have only structural constraints on the

state-space matrices and the state-space representsgibican be non-minimal.

Definition 7. Given a digraphG = (V, ) with n vertices and the-atuples?, and Py; let An_1(G)
be the unique binary matrix given 1§8.2) and |; be defined for all i, j according t¢2.3). We define
(G, Py, Pu) as the set of transfer function matrice$zP< S(An-1(G), Py, Pu) such that the transfer

function sub-matrices;Rz) € Rﬁy(i)xp“(j) (where Rz) = [R;(2)];,;) are such that

deIay(P.j(z)) > Iij if Iij < o0
(3.11)
P”'(Z):O if|ij:OO

foralli, j.

It is easy to see, from DefinitiorBand7, that&(G, Py, Py) andT(G, Py, Py) are subspaces. We
refer to systems 5 (G, Py, Pu) andZ(G, Py, Py), for someP, and’Py, asstructured systems over.

The sets of asymptotically stable and BIBO stable strudtgyestems oveg with input and output
partitions asP, andPy are denoted b>(G, Py, Py) andT3(G, Py, Py), respectively.

Lemma 4. Given a digraphg = (V,£) and n-tuplesPy, P, andPy. Let P be a structured system with a
state-space representati@A, By,Cy,Dyy) € &(G, Py, Py, Pu) With state vector ¢k), output vector {k)
and input vector (k) partitioned according tdPy, Py and Py, respectively. Then the transfer function

matrix of the structured systeti{P) € T(G, Py, Pu).
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Proof. Let P(z) be the transfer function d?. From @.9), we get
P(z) = Dyy+ ZOCyAkBuz_k_l. (3.12)
k=i
DefineRy := Dy, andRy; 1 := C,A*By, for all k € No. From Lemmas2 and3, and the partitions of
state-space matrices fror8.10), we see that
AE SA(G), PP = GA € S(Aka(G). Py Py)
= GABue S Aks1(9), Py, Pu) (3.13)
= Rc € S(A(G), Py, Pu) VkeNo.
Note that4o(G) = |. From 3.12) and definitions of R¢}k, we can write
P2 =S Rz~ (3.14)
2
Following the facts that
o A(G)=An_1(G) forallk>n—1,

o S(An-1(G), Py, Py) is a subspace,

o S(A(G), Py, Pu) C S(An-1(G), Py, Py) for all k,

itis easy to see th&(z) € S(An-1(G), Py, Pu) from (3.14).
SinceP(z) is partitioned according t¢Py, Py) we can writeP(z) = [Rj(2)]ij, whereR;(z) is the

transfer function sub-matrix mapping input vectg(k) to output vectos; (k). From @.14), we get

[e.9]

Ri(2 = k;[Rk]i iz (3.15)

where[Ry]ij is the sub-matrix oR, for all k. From @3.19), (2.2) and @.3); the delay ofR; () is given

by

delay(Rj(2)) = inf{me Np: lim Z"Rj(z) # 0}

=inf{meNo: lim 2" S [Rdijz % # 0}
" (3.16)
>inf{me No: lim " %[Ak(g)]ijz_k +0}
— 00 &
=inf{{me No: lim 2" S K40} =1y,
— 00 K& i
Py, Pu). O
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Theorem 1. Given a digraphg = (V,£) and n-tuplesP, and Py.

1. Let Rz) be a transfer function matrix if£(G, Py, Py) with input vector (k) and output vector
y(k) partitioned according t@®, andPy, respectively. Then there exists a state-space realizatio
(A,By,Cy,Dyy) of P(2) in &(G,Px, Py, Pu) With state vector ¢k) partitioned according to some

n—tuple Px.

2. If P(z) is also BIBO stable, i.e. @) € T5(G, Py, Pu), then there exists a state-space realization

(A,By,Cy,Dyy) of P(z) in &%(G, Px, Py, Py) for some r-tuple Py, i.e. A is Schur-stable.

Proof. A digraphG = (V,£) and transfer function matriR(z) € T(G,Py,Py) are given. SoP(z) is
partitioned according tePy, P,) and is of the forrP(z) = [B;(2)];,;. Note thatR; () is essentially the
transfer function matrix mapping; (k) to y;(k), where inpuu(k) = vert[u, (k)]; andy(k) = vert[y; (k)]
are partitioned according B, andPy, respectively.

From @3.11), we see thaBjj(z) = 0O if there is no directed path frowy to v; over the digraphg
anddelay(R; (2)) > lij, otherwise. The condition tha;j(z) € Rp"" ™ anddelay(R; (2)) > I;j can
equivalently be written aB;(z) = Z i H; j(z) (with possible pole-zero cancellations at origin) where

Hij(2) € ng(i)xﬂ‘(j). Thus @.11) can be written as

z i Hij (z) if lij < oo
Rj(z2) = (3.17)
0 otherwise

whereH;j(z) € ng(i)xp”(j) for all i, j. Consider minimal realizations &j(z) in the following cases
and define local states corresponding to a vertex as showw.bel
e Wheni = j, define local statex; (k) at vertexv; such that
Xi (k+1) = Aiixi (K) + Bj ui (k)
Ri(2): (3.18)
yii (K) = Ciixii (K) 4 Dijti (k)
e Whenj € N7, define states;; (k) at vertexv;
Xij (K4 1) = Ajjxij (K) + Bjjuj (k)
Ri(2): (3.19)
¥ij (k) = Cijxij (k)
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e Whenl;; > 2, let a shortest path from vertexto vertexv; be given byrgj = 7% (0) 75 (1) ... 75 (Iij ),
wherert; (0) = vj andTg; (I;j) = vi. We refer torg; (p) for pe {1,...,ljj — 1} as intermediate ver-
tices. In this case, we define states at each vertex on thepdtiiows.

0 0
X7 (k+1) = A (k) +Bijuj (K)

Z Hij(2): (3.20)
0 0
i (k) = Ciix (K
Note that statexi(jo) (k) are defined at vertex; and the outputyi(jo) (k) are passed to vertex; (1),
i.e. the first vertex in the selected path frognto vi. At verticesrsj(p), p € {1,...,l;; — 1}, we

define statexi(jp)(k) corresponding to unit delay systems

L Pk =y

yiP (k) =xP (k).

z (3.21)

We denote the state vector corresponding to each vertexbex (k), which is formed by appending
the states; (k), x:i (k) vr € A" andxg‘é)(k) wheneverry(p) =V (for p € {0,...,lap—1}), i.e. when
vertexy; is a vertex on the shortest path from some vevigto some other vertew,. A network output
vector ij;i (k), for all r € A, is formed by appending;i (k) and y;'g)(k) wheneverm(p) = vi and
Tp(p+1) = v (for pe {0,...,lap—1}). Similarly, a network input vectofij (k), forall j e N[, is
formed by appending; (k) andy;’f))(k) wheneverg,(p) = vj andTip(p+1) =V (for pe {0,...,lap—
1}). Note that the network inputs defined at vertgxdo not affect the network outputs at the same
vertexy; for any time instank.

At vertexvi, the outputy; (k) is given by

vl =yi®+ T vik+ ¥ v VK (3.22)
JEN Jihij=2

Thus, we can define sub-systems{P };, each with local stateg k), local inputsu;(k), local out-
putsy; (k), network inputsfij (k) (for all j € N;~) and network outputgy (k) (for all r € ;). Following
the state-space equatiorsi(8), (3.19), (3.20, (3.21), (3.22 concerning these states, inputs and outputs
at each node, we can see tlRgk ™ 1) andy;(k) are linear functions of;(k), u;(k) and{fij (k)}jeNr;
while fyi (k) is only a function of(k) (for all r € A;*). Thus, then sub-system¢P}; satisfy the struc-

ture given in 8.5) while the network inputs and network outputs sati§yr). Thus the transfer function
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matrix P(z) is expressed as a networked systemvhich is a strictly causal interaction of sub-systems
{B}i over a zero-delay network represented by the given unighieligraphG. Following (3.5), (3.7),
(3.8) and B.9), we can get a state-space realizationda@s (A, Bu,Cy, Dyu) € &(G, Px, Py, Pu) for some
n—tuple Py. Following the construction dP, we can see thd® can be a non-minimal realization of
P(z) wheretf (P) = P(2).

In the second case whé{z) is also a BIBO stable transfer function, we show that the taoson
procedure used in the previous part of the proof also assisgesptotic stability of.

In order to check asymptotic stability 8f we consider the zero-input system by assunuiiil) =
0Vi,k. First, we shall separate the states define®ihg), (3.19, (3.20) and @.21)into two categories.
The first category consists of the states correspondingedrémsfer function matriceg;(z), Vi €
{1,...,n},j € N; U{i} that were defined in3(18 and @.19. This set of states can be written as
X1(K) = vertxj (K)licy, . ny.jen:-ugiy- From the state-space equations corresponding to thess,sta
we get

X1(k+1) = diag[Aijlic s, ny jen:- ugipXa(k) (3.23)
whenu; (k) = 0 for all i, k.
The second category consists of the states correspondaikghe P (z) whenl;; > 2. For example,

assume that a shortest path from vertexv; to vertexv; has length greater than 1. Then
1 = 1% (0) 7;(1) ... 7% (lij)

wherel;; > 2, 1;(0) = v; and 75 (l;j) = vi. Corresponding to this path, the states earlier defined in

(3.20 and @.21) arex” (k), X" (K), ..., X" (k). Let us define

Xij (k) = vert X (K)] pego, .1y -1

corresponding to the patfgj. From the state-space equations corresponding to theées,sta& can see

that

Aij

Xij(k+1) = | 0 Xij (K). (3.24)
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Define Xa(k) = vert[Xi; (K)]i j:2<1; <n) @s the set of states correspondingRidz) whenli; > 2. Note

that X; (k) andXx(k) constitute all the states defined corresponding tontsab-systemgP };. From

(k)
triangular with{Ajj }; ; on the diagonal and the rest of the diagonal terms being zero.

(3.23 and @.24), we can see that the—matrix corresponding to the dynamics [@ﬁ;(")] is block lower

By hypothesisP(z) is BIBO stable which implies thgtP; (z) }i j are all BIBO stable, which in turn
implies that{H;;(2)}i ; are all BIBO stable. Note that, we assumed minimal reabnatiofR;(z) and
Hij(2) in (3.18), (3.19 and @.20 which implies that the matrice§A;; }; ; are all Schur-stable. Thus,
we can see that the—matrix of the networked realizatidf is also Schur-stable. This implies that the
there exists a state-space realizatios: (A, By,Cy,Dyy) € &5(G, Py, Py) such thatf (P) = P(z) when

P(z) is BIBO stable. O

From Lemma4 and Theoremi, we can see that the set of structured systems over a given uni
weight digraphG can be represented by eith@(G, Py, Py) or T(G, Py, Pu), since both the subspaces

describe the same set of systems.

3.2.1 Structured realizability

In the case of designing systems for practical use, we neédizablity and detectability of the de-
signed systems. For example, stabilizing controller depi@blems require the designed controllers to
be stabilizable and detectable. We refer to the propertgalizing a structured transfer function matrix
in (G, Py, Pu) as a stabilizable and detectable structured state-sppEseatation it& (G, Py, Pu) by
structured realizability

Theoreml shows that given a digrapf and any structured transfer functi®z) € (G, Py, Pu)
there exists a structured systéhe G(G, Py, P,) with the same transfer function. In the casePgE)
being BIBO stableP was shown to be asymptotically stable (which is stabilieabid detectable). But
given a generic unstable structured systefi(iéi, Py, Py), the proof of Theorem cannot be used to ob-
tain a stabilizable and detectable structured sy®en® (G, Py, P,) because the construction procedure
used in Theoren suggests a non-minimal realization and in general, doepnontise stabilizability
and detectability oP. Even in literature, there is neither a minimal realizattenhnique nor a real-

ization technique that assures stabilizability and datglity for generic structured transfer function
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matrices while guaranteeing a specific sparsity patterrihferstate-space matrices. Thus, structured
realizability is still an open problem which needs to be added before using transfer function ap-
proaches to solve problems which impose sparsity consdraimthe state-space representations of the

designed systems. This is an important observation andtatmaion of this thesis.

3.2.2 Structured systems as Systems over networks

Remark 4. Following equationg3.5), (3.7), (3.8), (3.9), (3.10 and Definition®, it is easy to note
that a discrete-time networked system P that is a strictlysefinteraction over a unit-weight digraph
G, with state, input and output partitions given B, P, and Py, has a state-space representation
in &(G,Px, Py,Pu). And Lemmad shows that the transfer function matrix corresponding tohsa

networked system belongs to a subspagg, Py, Py).

From Remarld, we can see that any networked systemith input and output partition®, andPy,
respectively; that is a strictly causal interaction over gfiven unit-weight digraply has a state-space
representation ii® (G, Py, Py) and it’s transfer function matrix is if(G, Py, Py). Since&(G, Py, Pu)
and¥ (g, Py, Py) are subspaces of systems with linear constraints on tla¢é-space representations or
transfer function matrices, search for structured systemaatively easier than searching for systems
over networks, and in some cases is also a convex problem.rder ¢o utilize the advantages of

structured systems and still design systems over netwaksise the following two results:

e Given a structured system &(G, Py, P,), we show that there exists a networked system which is
a strictly causal interaction ovér with same state-space matrices as that of the given steatctur

system. This result will be shown in Lemrba

e Given a stable transfer function matrix §(G, Py, Py), we show that there exists a stable net-
worked system which is a strictly causal interaction avevith the same transfer function as the

given system. This result will be shown in Corolldry

In this section, we address the reverse problem of expgeshi| elements o6& (G, Py, Py) or

(G, Py, Pu) as strictly causal interactions of sub-systems over thenginnit-weight digraplg.
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Lemma 5. Given a unit-weight digraply = (V,£) and n-tuplesP, and Py, and a structured system
P = (A,By,Cy,Dyy) € &(G,Px, Py, Pu), there exists a networked systéhwhich is a strictly causal

interaction overg with the same state-space representaiiénBy, Cy, Dyy).

Proof. Let then—tuple Py denote the state partition correspondind’tdlrhen the state-space matrices
A, By, Cy andDy, are structured and partitioned as given Byl(). Thus, we can partitiol = [Ajj]; ;
and[CY]; ; such thatyj andC}; are zero matrices whepd(G)];; = 0.
Definen sub-systemgP }; given by
X (k+1) = Aixi (k) +Blui (k) + 5 Ajij(k)
JeN

R: yi(k) =Cix (k) + D (k) + 5 Cf&ij(k) (3.25)
JeN™

k) =x (k) Vren;

for all i, interacting over a network interconnection given by
Gij(K) =mij(k) V(vj,vi) €€ (3.26)

wherex(k) := vert[x(k)];, u(k) := vert[u;(k)]i andy(k) := vert[y;(k)]; are partitioned according B,
Py andPy, respectively.
By combining 8.25), (3.2 and eliminatingdj; (k) andnj (k) for all (vj,v;) € £, we get the state-
space equations for sub-syst&ras
Xi(k+1) = Aixi(k)+ > Ajxj (k) +Blui(k)
JENT

Wk =Cix (k) + 3 Cxi(k)+DMu(K)
JENT

Vie{1,. .. n. (3.27)

which implies that that the networked systéhobtained by the interaction of sub-systefi}; over
the network described by3(26 has the same state-space representd#oB,,Cy,Dy,) as the given

structured systerR. O

Lemmab shows that given a unit-weight digraphand a structured systefin &(G, Py, Py), there
is a simple way to construct a networked system which is etlstitausal interaction ovey, with the

epresentation. This is mainly possiioleube there are no bandwidth restrictions
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on the communication links (i.e. no restriction on the sizenessages sent on the links) and also, the
communication links do not introduce any noise. Thus, combi equations3.8), (3.9), (3.10 and
Lemmab, we can treat5(G, Py, Pu) and the set of strictly causal interactions ogefwith input and

output partitionsP, andPy) as equivalent sets.

Corollary 1. Given a unit-weight digrapl§ = (,£) and n-tuplesP, and Py, and a stable struc-
tured system R) € T5(G, Py, Pu), there exists a stable networked systeémwhich is a strictly causal

interaction overg such thattf (F) = P(2).
Proof. The proof follows from Theorer. O

Similar to structured realizability, we refer to the prapdp realizing a structured transfer function
matrix in (G, Py,Py) as a stabilizable and detectable networked system whichstsicily causal

interaction ove with the same transfer function astwork realizability

Remark 5. From the proof of Theorerh and discussion in Sectid®2.1, we notice that the network
realizability problem is also an open problem which needbdmamddressed if we want to use transfer
function approaches to solve problems that require thegihesl system to be a networked system that

is a strictly causal interaction ovey.
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CHAPTER 4. Internal stabilization of networked plants using networked controllers

In this chapter, we consider a family of plants that are neted systems over a given network, and
consider the problem of feedback stabilization using arotiat which is also a networked system over

the same network.

4.1 Networked plant model

A networked plantP is modeled as a strictly causal interaction of sub-systeamsn( @.5)) over
a given unit-weight digrapky, but with each sub-system now including local exogenoustinpctor

w; (k) and local regulated output vecta(k). The state-space description of the sub-systéfg are

given by
xi(k+1) = Aix (k) +Bf'wi (k) + By (k) + Y Bﬁ-Zij(k)
JENT
7(K) = Cixi(K) + DP"wi(k) + DU (k) + 3 D &y (K)
R: JENT Vie{l....,n}  (4.1)
yi(k) = Cx (k) +DM"wi(k) + ¥ DY gij (k)

JeN™
Nri (K) :Cﬂxi(k) VreN”

wherex;(k) denotes the local state vectay,(k) local exogenous input vector, (k) local regulated
output vectory; (k) local control input vectory;(k) the local measurement output vectgy, (for all
r € i) the local network outputs anfjj (for all j € ;™) the local network inputs corresponding to a

sub-systen. The discrete-time network corresponding to the unit-Wwedigraphg is given by
Gij (k) = nij (K) V' (vj,vi) € €. (4.2)

Combining @.1) and @.2), the network inputs and outputs can be eliminated to gigestate-space
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equations for the sub-systems as

X (K+1) = Aixi (k) + Bl'wi (k) + Blui (k) + 5 Ajxj(k),

JENT
7 (k) =Cix (k) + D" (k) + DU () + 5 Cixj(K) wie {1,....n} (4.3)
JENT
yi(k) =Cixi (k) +DY"'wi(k)+ 5 Cixj(K),

JEN™
whereAjj == BﬁC,'J7 Ch = DiZJ-ZCi’j7 andC) := DiijCi’j’. The state-space equations #h3) can also be
concisely written as
X(k+1) A By Byl [x(Kk)
P:| zk) | =|C, Dmw Dzl [W(k) (4.4)
y(k) Cy Dy O |u(k)
whereA := [Ajj]; j, Bw := diag[B}"]; , By := diag[B}l;, C, := [Cfj]i j, Cy := [Cmu, D,w := diag[D{";,
D, := diag[D?}i andDy,, := diag[D}"i (such that;, Ci andCﬁ are zero matrices whe(w;,vi) ¢ £
andi # ) denote the structured state-space matrix@s;:= vert[x (k)]i, w(k) := vert[w;(K)]i, u(k) :=
vert[u;(K)];, z(k) := vert[z(K)]; andy(K) := vert[y;(k)]; denote the complete state, exogenous input,
control input, regulated output and measurement outpubx@corresponding to the networked system

P and be partitioned according R, Pw, Pu, P; andPy, respectively. From4.3), and the partitions of
x(k), w(k), u(k), z(k) andy(k), we can see that

A€ S(A(G),Px,Px); Bwe€ S, P, Pu), Bu€ S, Px,Pu),
C, € S(A(G), P, Py), D€ S, P,Puw), Due S, P.Py), (4.5)
Cy € S(A(G), Py, Px), Dywe S, Py, Pu).

According to the definition in Sectiaa 3, a controllerkK which is a mapping from the measurement
outputsy(k) to the control inputsi(k) is said to stabilize the plaf given in @.4), if Ift (P, K) is BIBO
stable and is said to internally stabiligef Ift (P,K) is asymptotically stable. Given a networked plant
P that is a strictly causal interaction over a given digraphwith dynamics given by4.3), our main
goal is to design internally stabilizing controllers thes also strictly causal interactions over the same
digraphG. From the previous chapter, we saw tk&iG, Py, Py) andZ(G, Py, P,) are equivalent sets

of systems that can be used to represent the networked systbivh are strictly causal interactions
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Figure 4.1 A networked controller in feedback with a netveatksystem over the same zero-delay
network.

over the given unit-weight digrapfi. But Remarkb points out that designing stabilizing controllers as
structured transfer function matrices is not equivalemtesigning internally stabilizing controllers that
are strictly causal interactions over the given digrgpimless it is shown how to find a stabilizable and
detectable networked system with the same transfer funasaan unstable structured transfer function
matrix.

Thus, the classical Zames’ parameterizatid®] fnd Youla-KuCera parameterizatio?l22], which
are transfer function approaches for parameterizing ablilting controllers, are not suitable for pa-
rameterizing all stabilizing networked controllers theg also strictly causal interactions over a given
unit-weight digraphG. Instead, we use the state-space approach for Youla-Kyizmameterization

based onZ3] to parameterize all stabilizing networked controllersthie next section.

4.2 Allinternally stabilizing networked controllers

In the standard Youla-Kucera parameterization for iratynstabilizing controllers for a general
plant [20], the set of all internally stabilizing controllers is congted from a model based controller
and a Youla parameté) which is a stable system. In our case, the pRig a networked system. In

order to parameterize internally stabilizing networkeatoallers, first a model based controlléris
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chosen to be a networked system by finding appropFat@dL. Then Theoren2 shows that choosing
the Youla paramete@ to be a stable networked system will parameterize the &gl networked

controllers for the given networked plant.

Theorem 2. Given a unit-weight digraply and a stabilizable and detectable networked plant P that is
a strictly causal interaction ovey with the sub-system dynamics giver(4l) and the network interac-
tion given by(4.2). Let the state-space representation for P be give(dhbd) with state-space matrices
structured and partitioned according {d.5). Given there exist matrices £ [F;jJi j € S(A(G), Pu, Px)

and L= diag|Li]i € S(I,Px, Py) such that A+ B,F and A+ LC, are Schur-stable. Then the set of all
internally stabilizing FDLTI controllers for P, which arelso strictly causal interactions ovey, is
parametrized by

K =1ft(J,Q), (4.6)

where Je &(G, Px, Pu+ Py, Py+ Pu) With a state-space representation

x3(k+1) A+BF+LCy | —L By x3(k)
Il ouk | = F 0 | y(K) (4.7)
¢ (k) -G 0 p(k)

and any FDLTI Qe &%(G, Py, Py). Note that the vectors;k) := vert[x) (k)];, & (k) := vert[& (k)] and

Y(k) := vert[y;(K)]; are partitioned according t@®, Py and P, respectively.

Proof. First, assume th&p is an FDLTI system ir&%(G, Py, Py). Itis a well-known result that given
Jin (4.7) and any stable, causal and FDLTI syst@nthe controller given b = Ift (J, Q) internally
stabilizes the given plartin (4.4). Next, we will show that based ahin (4.7) and aQ € G5(G, Py, Py),
we can get a strictly causal interaction @nvhich has the same state-space representatitin(a<Q).

SinceQ € &%(G, Py, Py), the state-space representatiorQds given by(Ag, Bg,Cq,Dg) in the set
G(Q,Pf? ,Pu, Py) for some state partitios, which can also be written as

Lkt =5 AN +BRE(K)
jeN; Ui}

p= 3 Ci?x?(k)+Diin(k)
JeNTU{i}

Vie{l,...,n} (4.8)
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Figure 4.2 Feedback interconnection of the networked pRnand a parametrized controller
=1ft(J,Q).

whereAq = [A7]ij, Cq = [Cij (with AT andC? being zero matrices wheneved(G)]ij = 0), Bq =
diag[B?]; and Dg = diag[D2)i. Let xq(k) = vert[x(k)]; denotes the state vector @ Using the

sub-matrices oA, By, Cy, F andL; (4.7) can be written as

Fk+1)= 5 (Aj+BIFj +LiC)x (K — Liyi(k) + Bli(k),

JeN: Ui}
uk)= 5 R+ k), (4.9)
JeN: Ui}
Gl= 3% (GG +yik).
JeN; U{i}

foralli € {1,...,n}. Combining equations if(9) and @.8), we eliminate the variable§(k) and s (k)
to write the state-space equations correspondirg tolft (J, Q) as
k)= Y AN (K Bk
JENTU{i}

uk) =Y CEX()+ DYk
JeN Ui}

Vie{l,....n} (4.10)
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I (k
wherext (k) = [)?;((k))} and

< |Aj+BYR;+LCY —B'DPCY  BUCT ‘ —Lj+B'DR
Ai= Qe Q | o= Q |’
—B°Cj, Aj B;
K. K._ nQ
G = |:F|j — DiQCi’} Cﬂ ; D" =Dy

From @.10), it is easy to see that ¢ 6(g,73x+7%9,73u,73y). From Lemmab, we know that 4.10) is
equivalent to a strictly causal interaction ogewith the same state-space matrices aglin@.

On the otherhand, from the theory of Youla parameterizatiee know that given matricels and
L such thatA+ ByF and A+ LC, are Schur-stable, any internally stabilizing controller the plant
P is represented biK = Ift (J,Q) whereJ is given by @.7) andQ is a stable, causal, FDLTI system.
Now, assume thaf is a strictly causal interaction ovér, which implies thaK has a stabilizable and

detectable state-space realizatior&Si(G, Py, Py). Then, it is easy to see thKtinternally stabilizes]

given by
Xj(k+1) X;(K)
Il g | = £(K) (4.11)
y(k) c, |1 o0 u(k)

wherex;(k) is partitioned according t®y. Following a similar procedure as before, we see Qat

Ift (J,K) € &(G, Py, Py) and in particulaQ € G5(G, Py, Py). .

Remark 6. The main result of Theorefis to show that given a networked plant, the set of all intéyna
stabilizing controllers that are also strictly causal indetions over the giveg can be described using

the subspace of structured systems give®by, Py, Py).

4.2.1 Sufficiency conditions for constructing= and L

Theoren® requires matrices matric€s= [F;]i j € S(A(G), Pu, Px) andL = diag[L;]; € S(I, Px, Py)
such thalA+ByF andA+-LC, are Schur-stable. The theorem provides a characterizatahinternally
stabilizing networked controllers over the given netwodséd on the matricds andL satisfying the
above mentioned constraints. In this section, we provideitoctive algorithms to obtain such matrices

F andL. Note that for stable plantf, andL can always be chosen to be zero matrices. Thus, Thedrem
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and the results of next part of the Chapter provide a netvadoskéution for a stable networked plant. In

the case the plant is unstable, we propose the followingoagprbased on relaxed LMI conditions.
The stability test for discrete-time systems is given bysadite-time Lyapunov equation or a Stein

equation. In 4], the stability test has been expressed as a feasibilityl@no as shown in the following

lemma. This formulation is best suited for imposing spgrsi@instraints or- andL.

Lemma 6. A matrix A is Schur stable if, and only if, there exist a symimebatrix M = M’ and a

matrix G such that the LMI

M AG
~0 (4.12)
GA G+G —M

is feasible.

Note that, in Lemméb, there are no constraints on the mat@x which is a free parameter. We
extend Lemmab to construct matrices and L with the required sparsity constraints by imposing

constraints on the free parame@and solving the following convex feasibility problems.

Lemma 7. Given matrices A and Bthat are partitioned according t¢Px, Px) and (Px, Pu), respec-
tively, there exists a matrix [ S(A(G), Py, Px) such that A+ ByF is Schur-stable if the following

feasibility problem has a solution
min 1

_ M AG+ByR
subject to >0,

(AG+BR) G+G —M (4.13)
G e S, Px, Px),
Re S(A(G), Py, Px)-

Proof. If (4.13 has a solution, the® + G’ = M = 0 which implies thatG is non-singular (from
Lemmal) and thusG—? exists. Combining4.13 with Lemmas, we note thalA+ B,RG 1 is Schur-
stable. Due to the structure BfandG in (4.13), it is easy to see (using Lemn2xthatF = RG ! ¢

S(A(G), Pu, Px) andA+ ByF is Schur-stable. O

Lemma 8. Given matrices A and {hat are partitioned according t¢Py, Px) and (Py, Px), respec-

tivelysthere.exists.amatrixk S|, Py, Py) such that A-LC, is Schur-stable if the following feasibility
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problem has a solution

min 1
_ M AG+CR
subject to >0,
(AG+CR G+G —M (4.14)
G e S, Px, Px),
Re S(1,Py, Py).

Proof. The proof is similar to that of Lemma If (4.14) has a solution, the@+ G’ = M = 0 which
implies thatG is non-singular (from Lemma) and thusG—?! exists. Combining4.14) with Lemmas,
we note tha#y/ +C§,RG—1 is Schur-stable. Due to the structureRandG in (4.14), it is easy to see that

L=(RG ') € S(I,Px, Py) andA'+CjL’ is Schur-stable, which implies+ LCy is Schur-stable. [

In this section, we only provide sufficiency conditions fanstructing the matricels andL with
the required properties. Necessary conditions for theéenge of such matrices is a more involved topic

and is left for future work.

4.3 Optimal solution for H, and H, networked controller design problems

Let G denote the unit-weight digraph representing a zero-deddyark interaction. Given a net-
worked plantP with sub-system dynamics following (1) that are interacting over a network specified
by (4.2). Then the problem of finding an internally stabilizing netiked controller, that is also a strictly
causal interaction ovef, while minimizing an objective function is referred toMstworked controller
design problerror Networked control problemIn this section, we show how to solve the following

norm-minimizing networked control problems
min [ Tzwll
subjectto K is a strictly causal interaction oveér (4.15)
T,w is asymptotically stable

whereT,y, = Ift (P,K) denotes the closed-loop mapping frev(k) to z(k), anda = 2 or co. In the case
whena = 2, the solution for 4.15 is referred to as{, networked controlleand in the case when

o= 00yitis.calledHss-netwoerked controller
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Theorem2 provides the parameterization of internally stabilizingtworked controllers that are
strictly causal interactions ovel asK = Ift (J,Q) whereJ is given by @.7) andQ € &5(G, Py, Py)
is a parameter. If there exists matrides= S(A(G), Py, Px) andL € S(I, Py, Py) such thatA+ ByF
andA+ LC, are Schur-stable, then the set of all closed-loop transégrioes fromw(k) to z(k) for an
internally stabilizing networked controller (which is aistly causal interaction ovey) can be obtained

using Theoren? and the results from @Q]) as

Caw:={T11(2) + T12(2Q(2) T21(2): Q(2) =tf(Q), Q€ &G, Py, Py)} (4.16)
where -~ .
A+ ByF —ByF Bw By
T T 0 A4L +LD 0
11(2) T12(2) _ Cy | Bw yw . (4.17)
T21(Z) T22(Z) C,+DaF —DzfF Daw Dy
0 C, Dyw 0

Thus, the norm-minimization networked control problem4riLlf can be written as

min [ T2n(2) |
for a = 2 oroc. (4.18)
subjectto T,w(z) € €,

Since the closed-loop transfer function matrix is simplyaffine function of the Youla parametéy,

we can rewrite the problem i (18 as a convex optimization problem
min  [|T11(2) + T12(2)Q(2) T1(2) |
subjectto Q(z) = tf(Q), fora =2 oroo. (4.19)
Q € 6S(g7PU7Py)
Following the results of Lemma and Theorenil, we note that the conditio® € &%(G, Py, Py) is

equivalent taf (Q) € T3(G, Py, Py). Since it is convenient to solve the probleml9 in the frequency

domain, we write4.19 as

min [ T11(2) + T12(2)Q() T21(2) [
for o =2 oroc. (4.20)
subjectto Q(z) € (G, Py, Py)
The problem is now reduced to a standard convex optimizédion which can be colved using convex

e 0tr = 2, the optimization problem ir(20 can equivalently be expressed
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as an unconstrained optimization problem by following thethndology used ing] that has a similar
problem setting. By extending the vectorization idea fomptex matrices 4.6) to transfer function

matrices, giverG(z) € R3*P, we write

ved(G(2)) = vert [vert[Gij (2)lici1.._a] e R (4.21)

Je{lvvb}

which is nothing but arranging the columns of the ma@ifz) to form a vector. It is also easy to see
that inverse operation from vector to a matrix form is wedfided. It is represented lwec™().

Let vedT5(G, Py, Py)) = {vedQ(2))|Q(z) € T3(G, Py, Py)} denote the set of vectorized elements
of T3(G, Py, Py). If Pu=(Pu(l),...,Pu(n)) denotes the output partition, then denoge= 3; Py(i) to
represent the total number of outputs. Similarly, dengtéo represent the total number of inputs. It
can be seen thaedT3(G, Py, Pu)) € RHE™ s a sub-space due to the delay and sparsity constraints
imposed by the seTs(G, Py, Py). Letadenote the total number of elements@fz) € T5(G, Py, Pu)
that are not constrained to be zero. Frdri(), we can infer thaQj(z) is of the formz {0 H;;(2)

(with possible pole-zero cancellations at origin) whekg(z) € RH, andt(i, j) is based org and
partitons P, and P,. Thus, we can separate the sparsity and delay terms of thezdf") into a

matrix (z) € Rp™*®

and say
Q(2) € TG, Py, Py) <= vedQ(2)) = S(2H(z) for someH (z) € RHZL. (4.22)

For example, consider the followir@(z) and the decomposition of its vectorization.

z+1 0.5
z—0.5 z—0.8 0
— —0.1 z+0.1
Q(Z) z—05 z—0.1 0 (4'23)
1 0.3 z—0.2

(z—0.1)(z-0.8) z-08 z-05
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2L 10 0 0 0 0 d
=L 0zt 0 0 0 0 df L _
(2_0.1)1(2_0 ) 0 0 z2 0 0 0 O ]

7208 00 0 2z'0 0 0O |ggp 1??2—0 8)
—vedqQz)=| #¥ |=jo 0 0 0 1 0 | 2%

0.3 0 0 0 0 o0z! o 2101 (4.24)

z—0.8 z—0.1

0 0O 0 0 0 0O 0 (@ 232

0 0O 0 0 0O O 0 (¢ 222

292 O 0 0 0 0 O 1

=:S(zH(2)

Note thatS(z) contains both the delay and sparsity constraints imposetthédogetT>(G, Py, Py).

Using the results of vectorization, we get

1T11(2) + T12(2)Q(2) T21(2) [, = [[VedT11(2) + T12(2)Q(2) T21(2))
= ||vedT11(2)) + (T21(2) ® T12(2)) vec(Q(2)) |,

= [|vedT1(2)) + (Ta1(2)' © Ta2(2))SDH (2|
Thus, we can pose the problethZ0 (whena = 2) as an unconstraingd, problem

min |vedT11(2)) + (T22(2) ® T12(2))S(2H (2, (4.25)

subjectto H(z) e RH¥,

which can be solved using standard techniques. H&tz) denote the solution of the unconstrained
convex optimization problem4(25. Then the corresponding optim&*(z) is given by Q*(z) =
vec 1(S(2H*(2)). SinceQ*(2) € T%(G, Py, Py), we can obtain a realizatio = (Ag, Bq,Cq,Dq) €
&%(G,Pu, Py), using Theorend, such thatQ*(z) = tf(Q) andAq is Schur-stable. The corresponding
controller is given by<* = Ift (J,Q), whereJ is given by @.7). Using Lemméb, one can obtain a strictly
causal interaction over givah with the same state-space representatiok”asFrom Theoren® and
the problem formulation in4.15, we can see tha¢* thus designed is the optimal internally stabilizing

networked controller that is a strictly causal interactiver G for the given networked plar.
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CHAPTER 5. Full-order networked controllers

In the previous chapter, we showed how to find an optimal matéy stabilizing networked con-
troller given a networked plant. In order to obtain the optirontroller, we converted the networked
control problem in 4.15 into an infinite dimensional unconstrained optimizatiookpem in @.20.
Note that the solution of4(20 gives a transfer function matrix for th@ parameter and the use of
Theoreml leads to a structured state-space representatio® fehich can have very large order. In
the case of centralized plants (where there are no strlicingtraints on state-space or transfer func-
tions), classical theory says thaffdl-order controller (a controller with the same number of states
as that of the plant) can be an optimal solution to the cemé@lcontrol problem. As we mentioned,
in the case of networked control problem, the optimal cdlarenight necessarily be of higher-order
than the given plant, which may not be a good option for pcatipurposes. Model reduction is one
option to reduce the order of the optimal networked cordrdiut the available techniques for model
reduction do not promise any required sparsity structuwethe state-space matrices (as we require) of
the reduced-order models. In this chapter we look at dedifuileorder networked controllers, which

is an alternative option for model reduction.

5.1 Full-order H> networked controller design

Let G denote the unit-weight digraph representing a zero-deddwark interaction. Given a net-
worked plantP with sub-system dynamics followindg (1) that are interacting over a network specified
by (4.2). ThenP has a state-space realization of the fodhdl with state-space matrices structured and
partitioned according to4(5). A controllerK is said to be dull-order networked controller for Bf it

is a strictly causal interaction ovér with a state-space realization &(G, Px, Py, Py) that internally
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stabilizesP. Thus, a full-ordefH, networked control problem can be posed as

min [Tzl
subjectto K is a full-order strictly causal interaction ovér (5.1)
T,w is asymptotically stable

whereT,,, = Ift (P,K) denotes the closed-loop mapping fravtk) to z(k).

In order to solve the problem irb(1), we need to search for a controll&rin &(G, Py, Pu, Py)
that also makes the closed-loop transfer funciign= Ift (P,K) internally stable. Let the state-space
representation df be (Ax,Bk,Ck,Dk) € &(G, Px, Pu, Py). Letxk (k) denote the states of the controller
which is partitioned according tBx. By connecting the controllef in feedback with the plar®, we

get a state-space representation for the closed-loopnsyisig(using .12) as

x(k+1) | . [ x(K) | .
=A +Bw(k)
XK(k+ 1) XK(k)
- - (5.2)
~ | X(k) .
z(k) =C + Dw(k)
_XK(k)_
where
A — A+ BUDKCy B.Ck 5- Bw+ BuDKDyw
BkCy Ac | Bk Dyw (5.3)

C:

C,+ Dz DkCy DzuCK] ;D= [Dzw+ DzuDKDyW]

The following lemma gives a characterization & norm constraint for a discrete-time FDLTI

system in terms of linear matrix inequalities (LMISs).

Lemma 9. Given a system P with a state-space realizatidrB,C, D), A is Schur-stable annﬂP||§ <u

if and only if, there exists symmetric matrices M and W suahTh(W) < u and

W CM D M AM B
() M 0|*0, (Y M of~=0 (5.4)
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Proof. This proof is a discrete-time version of the proposition26][
To prove (only if) part, assume thatis Schur-stable antﬂPH% < u for someu > 0. From @.15),

we see that

Tr (DD’ +CMLC) <

(5.5)
= 3IW = 0>DD'+CML' <W, Tr(W) < .
whereMc is given by @.17). Fore > 0, define
M(e) = Z)AK(BB’—H:I)(A’)". (5.6)
k=

We can see thdl (¢) is continuous ire and equal$/. whene = 0. From R5], we know thatM (€) > M
for any € > 0. Using these properties (&) and combining with%.5), we can say thafie > 0 such
that

DD’ +CMLC' < DD’ +CM(g)C' < W. (5.7)

For thise, we note that

AM(g)A'—M(g) +BB +¢l =0. (5.8)

Combining equations5(5), (5.7) and 6.8), we can say that the LMIs irb(4) are satisfied for some
M(g) > 0 andW - 0.
To prove (if) part, assume that the LMIs iB.4) are satisfied for somkl >~ 0 andW > 0. From

(5.4), we note that

M AM
=0 (5.9)
MA M

which implies thatA is Schur-stable. Using Schur complemenis4)also imply that

M—AMA —BB =0, W > DD'+CMC,

= M>M. = CMC >~CML,

= W - DD’ +CMC = DD’ +CMLC/,

= u>Tr(W) > Tr(DD'+CMC') > Tr (DD’ +CMLC'),
= IPI3 < .

inB.4)imply thatA is Schur-stable anfP||5 < p. O
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As shown in P4], the LMIs in Lemma9 can be extended by introducing an additional matrix

variable so that the product &fandM does not appear.

Lemma 10. Given a system P with a state-space realizatiarB,C,D), A is Schur-stable anh;IP||§ <

u if and only if, there exists a matrix G and symmetric matrigeand W such thair (W) < u and

w CG D M AG B
() G+G-M 0| -0 (Y G+G-M 0| >0 (5.10)
() () l () () l

is feasible.

Proof. The proof is very much similar to the one 4] with a minor difference due to a non-zebin
(5.10).

First assume thaf is Schur-stable an@PH% < p. From Lemma9, we know that there exists
symmetric matriced andW such that the LMIs ing.4) are satisfied. It is easy to note that a choice of
G = M would ensure that the LMIs irb(10) are also satisfied.

Next, assume that there exists a matéxand symmetric matrices! andW such that the LMIs
in (5.10 are satisfied. Note tha® + G —M = 0 implies thatG is non-singular (from Lemma)
andG~! exists. SinceG+G' = M = 0, we get(l — G"IM)'M(l — G~IM) = 0, which implies that

G+G —M = G'M~1G. Combining this observation with the LMIs i5.(.0), we can write

w CG D M AG B
(Y GM~'G of =0, (Y GM~G 0| -0 (5.11)
OO OO,

Define a block diagonal matrik := [EI)) G%M %’)]' Multiplying T from the right andr”’ from the left, the

LMlIs in (5.11) transform into the LMIs in%.4). Since symmetric matriced andW satisfy the LMIs

in (5.4), Lemma9 shows thaﬂPH% < p andAis Schur-stable. O

Note thatG can be any matrix and does not have any structural constidatsymmetry. This prop-
erty of decouplingd andC from M allows us to parameterize the controllers belongingtg, Px, Py, Pu)
in a flexible form and write thé{, networked control problem irb(1) as asemi-definite progrartSDP)

which can be efficiently solved.
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Theorem 3. Given a unit-weight digrapl¢y and a networked plant P with sub-system dynamics given
by (4.1) interacting over a network defined 4.2). Let the plant dynamics be given by a state-space
representation ir{4.4) with state-space matrices of the fo{8110).

If there exist matrices X, Y, SifISPy, Px) (with S—Y X being non-singular); @ S(A(G), Px, Px),
L e S(A(G),Pu,Px), F € S(I,Px, Py), Re I, Py, Py); symmetric matrices M, H, W and any general

matrix J of dimensionsynx ny (where i = 3 Px(i)) such that

Tr (W) < U, (5.12)
(W GX+Dul C,+DuRG Dyt DuRDy|
() X4+X'=M 14+4S-17 0 .0 (5.13)
) () Y+Y —H 0
) () () l ]
(M0 AX+BL A+BRG BW+BURD5,W_
() H Q YA+FC, YBy+FDyy
() () X4X'=M 14+8-J 0 ~0, (5.14)
) ) () Y+Y'-H 0
() ) () () l |

then there exists & &(G, Px, Py, Py) such that]|Ift (P, K)||§ < p andlft (P, K) is asymptotically stable.

Proof. Given the block-diagonal matrices, Y andS, choose matriced andV in (I, Py, Px) such
thatVU = S—Y X. This is possible because-Y X is assumed to be non-singular. One simple way
is to choosé&/ = | andU = S—Y X. Then construct the matricé, Bk, Cx andDg in the following

order

(5.15)

Ac :=VHQ—Y(A+ByRG)X —VBC XUt - V~YBC«
Based on the structure and partitions®B,, C,, Q, L, F, R (from hypothesis) and, V from construc-

k. Dk ) € 6(G,Px, Pu, Py). Let us denotdAx,Bk,Cy,Dk) by a system
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K. The state-space equations of the closed-loop sy$ge Ift (P,K) is given by 6.2) and the matrices
A, B, C andD are given by %.3).
LetG= [ h]. wherel" = (1 —XY’)(V’)~*andA = —(UY’)(V’) L. Then consider a transformation

matrix T = [} Y, ]. Note thatT ~ exists and is equal t{)(') Y(’\(/\,/),)_;l} , sinceV is non-singular. Also,

X T Y’ X |
GT = = (5.16)
u Al |0 V u o

Combining equationy.15), (5.3) and 6.16), we get the following identities

~ AX+BylL A+ByR . Bw+ BuR
T'AGT = ! uRG , TG — uRDyw ,
Q YA+FC, Y By + FDyw
- (5.17)
- . , X+X" 1+8
CGT= |CX+Dyl C,4+DuRG|, T(G+G)T= :
)Y Y+Y
Substituting 5.17) in (5.13 and 6.14) give us the following inequalities
w CGT D
() T(G+G)T-M 0| -0, (5.18)
) ) l
M AGT B
() T(G+G)T-M 0| >0 (5.19)

— . L - O . -1 .
whereM: = [ 2] is a positive definite matrix. L&k := [8T61 ?] andT := [To o 8}. Multiplying
0 0 1

(5.18 with T/ on the left andl on the right; and%.19 with T’ on the left andl on the right gives us
w CG D M AG B
() G+G-M 0| *+0 () G+G-M 0|*>0 (5.20)
() () ! () ) !
whereM: = (T’)—ll\ﬁT—l, is positive definite sinc® = 0. From 6.20, LemmaZl0 can be used to
show that]|Ift (P, K)||§ < M (whereK = (Ax,Bk,Ck,Dk) while Ax, Bk, Ckx andDg are given by %.15)
andA is Schur-stable which means that the closed-loop systemtemally stable.

€ 6(G, Px, Pu, Py) internally stabilize®® and ||Ift (P,K)|5<p. O
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Consider a semi-definite program (SDP) given by
min U
subject to  O< tracgW) < p (5.21)
LMlIs (5.13 and 6.14) are satisfied
Based on Theorer8, it is easy to show that if we find a solution to the optimizatfmroblem given in

(5.27) then we can obtain a full-order stabilizing networked colhér (that is a strictly causal interaction

over@) for a networked planP described by4.4) using equations ing(15).

Remark 7. Note that TheorerB only provides us a sufficiency condition to find a full-ordebdizing
networked controller. Since we do not have a necessary tongdthe controller obtained frorntb.21)
and Theoren8 is only a sub-optimal solution to the full-ordét, networked control problem given in

(5.1).

Note that the solution of the SDB.1) might give matriceX, Y andSsuch thaS—Y Xis singular.
Under that situation, one can perturb the matrixdby for some smalle, to calculate non-singular
block-diagonal matrices andV such thavU = S—Y X+ ¢l. This might disrupt the performance of

the synthesized controller slightly but is not a big prohlem

5.2 Full-order H,, networked controller design

Let G denote the unit-weight digraph representing a zero-deddyark interaction. LeP be a net-
worked plant with a state-space realization of the fodrd)(while the state-space matrices are structured
and partitioned according t@.©). Similar to the’{, networked control problem irb(1), a full-order
'H~ networked control problem can be posed as

min [ Tzwll
subjectto K is a full-order strictly causal interaction ovér (5.22)
T,w is asymptotically stable
whereT,, = Ift (P,K) denotes the closed-loop mapping frevtk) to z(k).

The procedure for solving th& ., networked control problem given i'5.22) is very much sim-

ilar-to-the procedure followed for thil, counter-part. In order to solve the problem |32, we
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need to search for a stabilizing controllérin (G, Py, Py, Py) that also minimizes thé{,, norm of
the closed-loop transfer functiof,,. Let the state-space representatiorKobe (Ax,Bk,Ck,Dk) €
S(G,Px, Pu, Py). Letxk (k) denote the state vector of the controller which is partéraccording
to Px. The feedback interconnection of the pl&hand a networked controlldf gives a closed-loop
state-space representation as giverbig)(

The following lemma gives a characterization &f,, norm constraint for a discrete-time linear

time-invariant system in terms of LMIs.

Lemma 11. Let P be a system wittA,B,C,D) as it's state-space realization. Then A is Schur-stable

and ||P||C2>O < p if and only if there exists symmetric matrix:MO such that

M AM B O

() M 0 MC
~0 (5.23)

is feasible.

Proof. The proof for this lemma can be obtained from a scaled versidne bounded-real lemma for
discrete-time systems. The following statement can beradmdaby slightly modifying the derivations

in [26]. P is asymptotically stable an|¢j3||§o < u if and only if there exisM > 0 and matrices., W

such that

AMA+CC+L'L =M,
B'MB+D'D+WW = ul, (5.24)

AMB+C'D+L'W =0.
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This scaled version of bounded-real lemrBa&2¢) can be written in terms of LMIs as follows

L/
h w]to
W/
M—-AMA-CC  AMB-CD
& . =0
() ul —B'NMB—D'D
M 0 AN C||M 0 B
& - =0
0 ul B D'| |0 I D
M 0 A C|[M o0 A B
& — =0
0 | B D||0o pl||Cc D
M~1 0 M~A M-I (M 0 AM~1 B
~ — B EO
0 | B’ D’ o pl||lcMt D
'M 0 MA MC/| ‘M AM B 0O |
| B D MA M 0 MC
& =0 & =0
AM B M 0 B 0 | D
CM D 0 ul |0 CM D pul |

whereM: = u~M andM = M~L. Both of them are positive definite becaudeis positive definite

andu > 0. Since[v';,',] [Lw] = 0 for all L andW, we get thatA is Schur-stable antﬂPHio < pifand

only if there existM >~ 0 such that%.23) is satisfied.

O

As shown in P4], an LMI characterization of thél,, norm constraint for a discrete-time linear

time-invariant system can be expressed as shown in thevialjplemma.

Lemma 12. Given a system P with a state-space realizatidrB,C, D), A is Schur-stable ant|P||§o <

u if and only if there exists a matrix G and a symmetric matrixidtsthat

M AG B 0
() G+G-M 0 GC
OO o
OO A O

(5.25)
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Proof. Using a similar argument as in the proof for Lemfta (only if) part can be proved by choosing
G =M and using Lemmal.
(if) part is proved by usings + G’ — M = G'M~1G, which means that the LMI ir5(25) implies

M AG B O

() GM-1G 0 GC
=0 (5.26)

I 0 00
Define a block diagonal matrix := [g G M Z?] . Multiplying T from the right andTl’ from the left,
the LMI in (5.26) transforms into the LMI in%.23. Since symmetric matricdd andW satisfy 6.23),

oo

Lemmall shows that|P||§O < p andAis Schur-stable. O

Theorem 4. Given a unit-weight digraply and a networked plant P with sub-system dynamics given
by (4.1) interacting over a network defined §.2). Let the plant dynamics be given by a state-space
representation ir(4.4) with state-space matrices of the fo(3110).

If there exist matrices X, Y, SifISPx, Px) (with S—Y X being non-singular); @ S(A(G), Px, Px),
L € S(A(G),Pu,Px), F € S(I, Py, Py), Re S, Py, Py); symmetric matrices M, H, W and any general

matrix J of dimensionsynx ny (where i = 3 Px(i)) such that

M J AX+BL A+BRG Bw+BiRD 0

() H Q YA+FC, YBy+FDyy 0

() () X4+X'=M 1+8-1J 0 X'C,+L'Dy, -0 (5.27)
)¢ () Y+Y'—H 0 C,+CGRDY,

) ) () ) | D%w+ DywR Dy

) () () () pl ]

then there exists Ik &(G, Py, Pu, Py) such that|lft (P,K) 12, < p andlft (P,K) is asymptotically stable.

Proof. The proof for this theorem is very much similar to the proaf Thheorem3. So, we shall skip

the details. 0

www.manharaa.com



50

Consider a semi-definite program (SDP) given by

min U
(5.28)
subjectto LMI 6.27) is satisfied

Based on Theoren, it is easy to show that if we find a solution to the optimizatfroblem given in
(5.28 then we can obtain a full-order stabilizing networked colhér (that is a strictly causal interaction

over@) for a networked planP described by4.4) using equations iny15).

Remark 8. Note that Theorem only provides us a sufficiency condition to find a full-ordeddizing

networked controller. Since we do not have a necessary ttongdthe controller obtained fron(b.28

and Theoren is only a sub-optimal solution to the full-ordét., networked control problem given in

(5.29.
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CHAPTER 6. Networked estimation

In the previous chapters, we considered the networked aoptoblem where a networked con-
troller is designed to internally stabilized a given netkeat plant while minimizing the norm of the
closed-loop system. In this chapter, we consider the pnoloienetworked estimatioar filtering which
is the design of networked estimators that are strictly aimeractions over a given unit-weight di-
graphg. The objective of this problem is to make each sub-systerheohetworked estimator asymp-
totically track the states of the corresponding sub-sysiéthe networked plant by exchanging infor-
mation with other estimator sub-systems.

In the following sections, the above mentioned networkddnedion problem is formulated and
analyzed to estimate the states of a given plant by minimitte effect of external disturbances and
measurement noise. We shall make some assumptions abeuatadbdity of the plant dynamics to

assure the existence of a networked estimator.

6.1 Networked filtering for networked systems

Let a unit-weight digraplg be the representation of a given zero-delay network interection.
Given a networked systef made of discrete-time FDLTI sub-systef8 }; interacting over the net-
work represented by. Let x; (k) be the state vector amd (k) denote the disturbance and measurement
noise vector corresponding B at time instank. The dynamics of sub-systeR) is be given by the
following state equations

X(k+1) = Aix (k) +Bwi(k) + 5 BS (k).
JENT

¥i(K) = Ciixi (k) + Diwi (k) + 5 D{Zj(k), VYie{l...n} (6.1)
JeNT

Nri (K) = CIxi(K), Vr € ;T
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wheren;; (k) denotes the message vector transmitted from sub-syBtensub-systent;, while ¢j; (k)
denotes the vector received by sub-syst@nirom sub-systenP; at time instantk. The zero-delay

network interaction is written as
Gk =nij(k) Y (vj,v) €E (6.2)

Combining the equation$(l) and €.2), we get state-space equations corresponding to the net-

worked systen® as follows

X (k+1) = Aixi (k) +Bwi (k) + 5 Aijxj(k),
JENT

¥i(k) =Cixi(k) + Diwi (k) + 5 Cijdij (k),
JENT

(6.3)

whereA;; = B,JCIJ andCjj = D,JC,'J7 The equations ing.3) can be written in a simpler form as

x(k+1) = Ax(k) +Bw(k),
(6.4)
y(k) = Cx(k) + Dw(k)
wherex(k) = vert[x; (K)]i, y(k) = vert]yi (k)]; andw(k) = vert|w; (k)] are the state, measurement and dis-
turbance vectors (partitioned accordingg Py andP,,, respectively); whiléA := [A;]i j € S(A(G), Px, Px),
B :=diag[Bi]i € S(I,Px,Pw), C:= [Cijli,j € S(A(G), Py, Px) andD := diag[Dj}i € S(A(G), Py, Pw)-
Corresponding to this networked syst@nwe design a networked estimatas shown in Fig6.1)
such that each sub-urt; estimates the states of the sub-systrhy exchanging messages over the
same causal networ. In a norm-minimizing networked filtering problem, our otfjge is to mini-
mize||x(k) —X(K)||, (for a =2 oroo) wherex(k): = vert[%(k)]; andxX; (k) denotes the estimated state
vector corresponding to each sub-systgm
This problem can easily be converted into a networked cbptablem, discussed in previous chap-

ters, by treating estimates as control inputs and writing@uivalent generalized plant’s sub-systems

G; as follows

xik+D)= > Ak +Bwi(Kk),
jeN; U{i}

z (k) = % (k) — ui(k), Vi (6.5)

= > Gixk+Diwi(k)
jeN; U{i}
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Network
wi(k) ¥ wa(k) ¥ wy(k) ¥
—> —> —>
1 (k) P 2 (k) P, zn(k) P,
- - -
yi(k) ya(k) Yn(k)
A4 A4 A4
<« E <« E <~ E,
nky | | wk) | ia(k)
A A A
A4 A4 A4
Network

Figure 6.1 Networked plarf® and a networked estimat® in terms of their sub-systemd }; and
{Ei}i.

whereu; (K) = % (k) is the state estimate arx(k) represents the estimation error corresponding to
at time instank, for alli. Since the dimension o (k) andX (k) are the same, we know thatk) :=

vert[u;(k)]; andz(k) := vert|[z (k)]; are partitioned according #. Pictorially, we can view the problem
as Fig.6.2whereG is the generalized plant, corresponding to the networkstieyP, with a state-space

representation given by (based on the state-space mafi€ds

x(k+1) A B 0] |xk)
zZk) [ =11 0 —I| |wk], (6.6)
y(k) C D 0] [uk)
andE is stable networked estimator that is a strictly causalaatiion overg. Note that the generalized
plant in 6.6) is similar to the networked plant i (4).
Our objective to design a networked estimator for a netwbdantP can be interpreted as design
of a stable and networked controlEeffor the generalized plai@ that minimizes the closed-loop system
norm || Towl|, = ||Ift (G,E)||, for a = 2 or co. Based on previous chapters (Lem#a heoreml and

Lemmab), we notice that stable networked estimators which aretlstrtausal interactions over unit-

ivalently be treated as element$6fG, Py, Py) or T3(G, Px, Py). Thus the

—
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w(k) 2(k) = z(k) — 2(k)
w | S
E

Figure 6.2 An equivalent model using a generalized pfanih a feedback interconnection with the
networked estimatde.

networked filtering problem can be written as

min - {| Tl o
subject toE € &%(G, Py, Py) or TG, Px, P), (6.7)
T,wis BIBO stable
For estimation, we only require the closed-loop transfercfion T,,, to be BIBO stable and do not
require internal stabilization of the given plant. Thus firoblem in 6.7) is much simpler than the
corresponding networked controller design problem4ii®). Since we only require BIBO stability of

T,w, ONe can also use the results 8f{o solve the problem ing.7).

6.1.1 Parametrization of all stable networked estimators

Using the methodology given in the previous chapter, werpatarize the set of all possible stable
networked estimators that are strictly causal interastioverG for a given networked plar® overg,

using the following theorem.

Theorem 5. Given a unit-weight digraply and a networked system P which is a strictly causal inter-
action overg with a state-space representation given(6y). Given a matrix Le (1, Py, Py) such that
A+ LC is stable. Then the set of all stable networked estimgtbet are strictly causal interactions

over@) that drive the estimate§ k) asymptotically to §) is given by

E =Ift(J,Q)
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where Qe &%(G, Py, Py) and
XJ(k+ 1) A+LC|—-L O XJ(k)
J: R(K) | 0 | y(k) |- (6.8)
& (k) -C |10 W(Kk)

Note that the vectorgk) := vert[x’ (K)]i, X(K) := vert[% (K)]i, & (k) := vert[& (K)]i and @(K) := vert[( (K)];

are partitioned according t@y, Px, Py and Py, respectively.

Proof. We prove this Theorem as a special case of Thed&em

Given the networked plarR in (6.4), define a generalized pla@ in (6.6) such thaty; (k) = % (k)
for all i.

First, assume tha® = (Aq,Bq,Cq,Dq) € &%(G, Px, Py). S0,Aq is Schur-stable. Letg(k) denote
the state vector o which is partitioned according tB2. Then,E = Ift (J,Q) whereld is given by

(6.8). Using .12, we get a state-space representatiorefeo be
XJ(k+ 1) A+ LC 0| -L XJ(k)
xq(k+1) —BoC  Aq | Bq | | Xa(k) |- (6.9)
u(k) |-DoC Co|Dq | | (K

SinceA+ LC andAq are Schur-stable, we can see thah (6.9) is asymptotically stable.

The state vectok;(k) = vert[x'(k)]i is partitioned according t@y and xo(k) = vert[x2(k)]; is
partitioned according t@2. Let the state-vector foE be expressed ag: (k) := vert[xE (K)]; where
xE(k) = [;?;((t))} Thusxg (k) is partitioned according tB,+ PL. Then the dynamics d in (6.9) can
equivalently be written as

Xx(k+1)= 5 AGx(k) +Byi(k),

AL Vi (6.10)
uk)= 5  Cixj(k)+Dryi(k),
JeN; Ui}
where
%: Aj+LG; O | BiE: —L; ’
-BC; A} BP Vi, | (6.11)

| - DG C.?] DF =D2.

'ITI
[ —
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Based on the state-space dynamic§.ib{) and the fact thakE is asymptotically stable, we can say
thatE € &5(G, P + PR ,Pu, Py). Lemmab shows thaE can be viewed as a strictly causal interaction

overg.

A+ LC ‘ -L 0

I 0 I
-Cc | I o0
£(k) Y(k)

A

Aq ‘BQ

Y

Co ‘DQ

Figure 6.3 Representing an estimation problem as a feedbtakonnection of generalized plaGt
and a parametrized estimater= Ift (J,Q).

To show thaE given by 6.9) estimates the states of the networked sydteme also need to show
thatX(k) — x(k) ask — oo wherex{k) denotes the estimated vector fréandx(k) denotes the state

vector of P at time instank. By definingx(k): = x(k) — x3(k) and following the equations(4) and

(6.9), we get

X(k+1) =x(k+1) —x3(k+1)
= AX(k) + Bw(k) — (A+ LC)x3(K) + Ly(k)
(6.12)
= (A+LC)(x(k) — x3(k)) + (B+ LD)w(k)

= (A+LC)X(K) + (B+ LD)w(K),

xq(k+1) = Agxq(K) + Bo(—Cxs(K) +y(k))
= Agxq(K) +BqC(x(k) — x3(k)) + BoDw(K) (6.13)

= AgXq(K) +BgCx(K) + BoDw(k),
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— x(K) — (1 — DgC)xs (k) — Coxq(K) — Dy(K)
— (1 - DEC)(x(K) — X3(K)) — Coxo(K) — DDW(K)

= (1 — DoC)X(K) — Coxq(k) — DoDw(K)
From 6.12, (6.13 and 6.14), the dynamics connecting the estimation ez and the input

(6.14)

disturbancev(k) can be written in terms of the state) andxg (k) as follows

Xk+1) | |A+LC 0| | X(K) )+ B+LD i)
XQ(k+1) BoC  Ag| |Xalk) BoD 6.15)
x(k)
zk)= || -DoC —Cq — DoDw(K).
o o Xl

SinceA+ LC andAq are Schur-stable, so {S“JQ"CC AOQ} because of its block-diagonal structure. Thus,
the estimation error asymptotically goes to zero ugng Ift (J,Q).

On the otherhand, from the theory of Youla parameterizatiwsa know that giverL such that
A+LC, is Schur-stable, any stabilizing estimator drgiven by 6.6) is represented bl = Ift (J,Q)
wherel is given by 6.8) andQ is a stable, causal, FDLTI system. If we also assumeBEhata stable
strictly causal interaction ovéf, thenE has a state-space realizationd(G, Py, Py). Then, it is easy

to see thak stabilizes] given by

xj(k+1) Al -L 0 x5(k)
Jol e =210 £(K) (6.16)
y(K) cCl1 o0 u(k)

wherex;(k) is partitioned according t®y. Following a similar procedure as before, we see Qat

Ift (J,E) € &%(G, Px, Py). O

6.1.2 Optimal networked estimator

Using the sufficiency condition given in LemrBawe know that if the feasibility problem ir(14)
has a solution, then there existss S(1, Py, Py) such thatA + LCy is Schur-stable. If such dnexists,

ansfer matrices fravtk) to z(k) can be obtained using Theoresrand

—
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following (4.16), (4.17) as

Caw=1{T11(2) + T12(2)Q(2)T21(2): Q(2) =tf(Q), Q€ &%(G,Px, Py)} (6.17)
where
| A 0 B 0 |
Tu(2) Ti(z)] | 0 A+LC|B+LD 0
T21(2) T2(2) 0 I 0 —
0 C D 0 (6.18)

A+LC|B+LD O

= I 0 —I
C D 0
Note that 6.18 corresponds to
A+LC | B+LD
Ti(2) = , Tia(2) = —1,
I 0
A+LC | B+LD
T21(Z) = s T22(Z) =0.
C D

Since the closed-loop transfer matrix is simply an affinecfiom of the Youla parametd&), we can

rewrite the networked estimation problem &%) as a convex optimization problem

min  [Tu(2) - Q2 T21(2)|l4
subjectto Q(z) =tf(Q), fora=2oroo (6.19)
Qe &%G, Py, Py),
which is similar to the problem4(19. Following the results of Lemméand Theoreni, we note that
the conditionQ € &5(G, Px, Py) is equivalent tdf(Q) € T3(G, Px, Py). Since it is convenient to solve

the problem .19 in the frequency domain, we writé.(L9 as

min 1T12(2) = Q(2) T21(2) |

subjectto Q(z) € T3(G, Px, Py).

fora =2 orco (6.20)
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Using the same vectorization ideas as in Chagtere can pose the probler6.20) (whena = 2) as an

unconstrained, problem

min  [lvedTi1(2)) - (Taa(2) @ )S2H ()

subjectto H(z) ¢ RH&?

(6.21)

wherea denotes the total number of element€Xf) € T5(G, Py, Py) that are not constrained to be zero
andS(z) is given by @.22. The unconstrained convex optimization problem@r2() can be solved
using standard techniques. Lté¢t(z) denote the solution of the optimization problef21). Then the
corresponding optima®*(2) is given byQ*(z) = vec 1(S(2)H*(2)). SinceQ*(2) € T3(G,Px, Py), we
can obtain a state-space realizati@r- (Ag, Bo,Cq,Dq) € &%(G, Py, Py), using Theorent, such that
Q*(2) = tf(Q) andAq is Schur-stable. The corresponding estimator is giveEby- Ift (J,Q), where
Jis given by 6.8). Using Lemmab, one can obtain a strictly causal interaction over gigenith the
same state-space representatiofc’asFrom Theorend and the problem formulation ir6(7), we can
see thak* thus designed is the optimal stable networked estimatdrigheastrictly causal interaction

over @ for the given networked plam in (6.3).
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CHAPTER 7. Networked systems over delay networks

In previous chapters, we studied networked systems thadtacdy causal interactions over zero-
delay networks. We saw that the state-space and inputfotgpresentations of a strictly causal in-
teraction of sub-systems over a zero-delay network coulddseribed using a unit-weight digragh
corresponding to the zero-delay network. Based on theseections withG, we derived networked
controllers and estimators for networked plants when thetp| controllers and estimators are all strictly
causal interactions over the same digrgphNow, we look at possible extensions of the theory devel-
oped for zero-delay network case to a general delay netwasmé.c

Let the discrete-time networked system be represented bgighted digraphy as described in
Section3.1.1 Letg = (V,€) be a weighted digraph wheW¥((vi,v;)) € N denotes the weight of the
edge(v;,vj) € £. Equation 8.4) shows that the network deldy (on the communication link from

sub-systen®; to R) andW((v;,v)) are related by
ti; =W((vj,v))—1 v (vj,v) €E. (7.2)

We also definedM; as the weight of a minimum-weight path from vertgxto vertexy;. If mis a
directed path, we denote the weightroby W(71), which is the sum of weights of all the edges in the

path. Thus, we can write
W; = inf{W(m) : rmis a directed path from vertex tov; }. (7.2)

Note thatrr = v; is treated as a directed path from vertgxo v; and weight of such a path is equal to
zero. SoW; = 0 for all i since there are no edges in the path: v;. If there is no directed path from
vertexv;j tov;, j # i, thenW; = oo since infimum (in 7.2)) of an empty set is treated as.

Given a weighted digraply, let a networked system® be described in terms of it's sub-system

dynamics given by3.5 and the network interaction given b®.6). By combining 8.5), (3.6) and
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(7.1), we can eliminate the network variablgs(k) andn; (k), and write the dynamics of the networked

systemP as

xi(k+1) = Aix (k) +Bilui(k) + 5 Ajxj(k—tij)
JENT

yi(k) = C%/Xi (k) + D?i’”ui(k) + Z Ci)] X (k—tij ),
JeENT

vie{l,...n} (7.3)

whereA;; := Bf,C]l andC| := D)fC].

Lemma 13. Given a weighted digrap§, a networked system P that is a strictly causal interactiearo

G with dynamics given b§7.3) is asymptotically stable if and only (£l — A(z)) has full rank for any

ze (C\]ﬁwhere
(A, ifi = j,
A@ij = Ay if (vj,v) €&, (7.4)
0 otherwise

\

where f; is given by(7.1).

Proof. The dynamics oP are given by 7.3). In order to check the stability of the system, we can
assume the inputs to be zero and disregard the outputs drobpssder the autonomous partf®given
by

X(k+1) =Aix(K)+ Y Ajxk—ty) Vi (7.5)
JENT

Let us definexi(jo)(k) =xj(k) for all'i € {1,...,n} and j € ;. Corresponding to the non-zero
delays in the communication links (given bg.1)), define the followinghetwork state:{xi(jr)(k)}i,j,r for

allie{1,...,n}, je N andr € {1,....tj} (whent;j # 0)
x5 (0 =% (k—1) (7.6)

Thus, the dynamics in7(5) can be written as

x(k+ D) =Ax(K)+ T A (k) i (7.7)
JENT
By defining a state-vector(k) of the form

%K) = , (7.8)
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we can write the state equations corresponding 16 @s

X(k+1) = AX(K) (7.9)

which is a collection of the equation.6) and (7.7). From the formulation of{.9), we can see that the
given networked systerR is asymptotically stable ifA is Schur-stable, i.e(zl —AT) has full rank for
all ze C\D.

We now show that for any € C\D, (Al —A) does not have full rank iffA| —A(A)) does not have
full rank, which will prove the hypothesis.

(=) Assume thatA| — A) does not have full rank for somee C\ﬁ. Then there exists a vectar

of the form

v=| e , (7.10)

that(Al — A)V = 0 or
AVi=AVi+ S Au\/ij(t”) Vie{1,...,n}
e (7.11)
A\/ij(r)zvigr—l) Vie{l,...,n},jeN ,re{l. . t}

where\/igo) =Vj. From (7.11), we note that

AV =AVi+ S ATUA Vie{l,...,n}
JENT (7.12)
= (Al-=AA))V=0
whereV = vert|Vj]; (partitioned according t@®y) andA(A) is given by {.4). Thus, {.12) shows that
(A1 —A(X)) does not have full rank ifA] — A) does not have full rank.
(«<) Assume thatAl —A(A)) does not have full rank for somee C\D. Then there exists a vector

V = vert|Vi];, partitioned according t®y, such thai{Al —A(A))V =0.

.....

Vil =AY vie {1 nhje N re {1, ) (7.13)

i
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where\/igo) =V for all i,j € Nj~. Following the same procedure as before, it is easy to shatv th
(Al = AV =0 forV formed from ¢.10. Thus(Al — A) does not have full rank ifAl —A(A)) does

not have full rank. O

In order to describe networked systems over delay netwarKg.8) in a simpler fashion, we in-
troduce a delay shift operator denoteddguch thatx(k — 1) = gqx(k) wherex(k) is any discrete-time
signal. The delay shift operator was also use®|rig describe systems over delay networks. From the
definition of the shift operator, it is easy to see that thadfer function corresponding to the operator
is z~1. Based on the shift operator, we call a mattig) sparsity and delay pattern matrikit's entries
[J(q)];; are either 0 og" for somer € No. Note that, such a sparsity and delay pattern matrix can be
used to describe not just the sparsity pattern in stateespatransfer function matrices but also the
delay terms.

We say that a matriR(q) is structured according to a sparsity and delay structufg)Jf [A(q)]i; =
[J(a)]ijAij(a) (for alli, j) where{A;j(q)}i; are all matrices of appropriate dimensions containing{oly

nomials ofq.

Definition 8. Given a sparsity and delay pattern matrigg) and n—tuplesP,, Py, let SI(q), Pa, Po)

denote the set of matrices that are partitioned accordinQ P,) and structured according to(4).

Given a weighted digrap@ with n vertices, using the delay shift operatpiwe shall define sparsity
and delay structures anby extending the definition ofl(G) and.Am(G) to A(G,q) and.An(G,q) (of
dimensionn x n) for m € Ng given by
1 ifi=j,

[AG,Q)lij == g if (vj,v) €&, (7.14)

0 otherwise

1 ifi=j,

gV if 155 is a directed path from vertex to v,
[Am(G,q)lij = (7.15)
of length at mosm and with smallest weight

0 otherwise
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wheret;; is given by {.1) andl(75;) denotes the length of pati; .
Based on the sparsity and delay pattern matrice3.it¥f and (.15, we can extend Lemmain

the following way.

Lemma 14. Given an n-tuple P, and a digraphg = (V,£) (with n vertices) with the sparsity and
delay structuresA(G,q) and An(G,q) (for all m € Np) given by(7.14) and (7.19), let {Ai(q)}i be
a sequence of matrices such tha{dd € S(A(G,q),Pa,Pa) for all i. Then By(q) = ﬁAk(q) c
S(Am(G.q), Pa, Pa) for all m.

Proof. From the definition of4,(G,q) in (7.15, we can see thatl;(G,q) = A(G,q). Thus, from
hypothesis, we know tha&(q) = A1(q) € (A1(G,q), Pa, Pa).

Now, assume thaBm(q) = [Tx-1A(Q) € S(Am(G,q), Pa, Pa) for somem= p. From Remarkl,
we can see thaBp1(q) = Bp(0)Ap+1(q) is partitioned according t¢Pa, Pa) and the sub-matrices

Bp+1(q)]ij = Yr_1[Bp(@)]ik[Ap+1(a)]kj. We see that

(

Hik(Q) if k=j,
Ppa(@lks = { QU %)L Hy(q) if (v ) € &, (7.16)
0 otherwise
\
Ri(a) if i =k,

gV m)—1m) Ry (q)  if Tk is a directed path from vertex to v;
[Bp(q)]ik = (7.17)

of length at mosp and with smallest weight

0 otherwise
\

where{Hy;(q) }x; and{Ri(q) }i are matrices with elements as polynomialsjrior all i, j andk.

If there is no path from vertey; to vertexv; of length at mosip + 1, then for allvi € V, either
there is no path fromy to v; of length at mosp or there is no directed edge fromto v. Thus, either
[Bp(a)Jik or [Ap+1(q)]k; are zero-matrices for alwhen[Ap.1(G,q)]ij = 0. Thus,[Bp.1(q)];; is a zero

matrix when[Ap,1(G,q)]ij = 0.
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Looking at all the paths from vertex to v;, we can also note that

(

Ti(a) i,

V(w1 T (q) if 75; is a directed path from vertex to v,
[Bp+1(q)]ij == (7.18)
of length at mosp+ 1 and with smallest weight

0 otherwise
\

for someT;j(q), which implies thaBp1 € S(Ap1(G,0), Pa, Pa)-

Thus, the given statement is true by mathematical induction O

Using the delay shift operatar and Definition8, we can write the dynamics of the networked

system in {.3) using a concise form

X(k+1) A(q) By | |x(k)

= (7.19)
y(k) Cy(d) Dyu| |u(k)
where
Ai o ifi=] G ifi=]
[A(Q)ij = qti Aj it (vi,v)e€ Cy(q)]ij = qli C?] it (vj,vi) €&
(7.20)
0 otherwise 0 otherwise
\ \
Bu=diag[BlJi ,  Dy,=diag[D}"]

andt;j is given by .1). ThusA(q) € S(A(G,q),Px, Px), Bu € S(I,Px, Pu), Cy(a) € S(A(G,Q), Py, Px)
andDy, € S(1,Py, Py).

Using the notation introduced in this section to descrilieragked systems over delay networks, we
can extend almost all the definitions and results for syricéiusal interactions over zero-delay networks

to strictly causal interactions over delay networks.

7.1 Structured systems

In Chapter3, we saw that networked systems that are strictly causakictiens over a zero-delay

network can be described using structured systems ovet-aaight digraph. In this section, we extend
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the results and show that networked systems that are picatisal interactions over a delay network

can be described using structured systems over a weighdeahti

Definition 9. Given a weighted digraply = (V,£) with n vertices and the-ntuplesP, and Py; let
An-1(G) be the unique binary matrix given §9.2) and W, be defined for all i, j according t¢7.2).
We defineg(G, Py, Py) as the set of transfer function matrice&zPe S(An_1(G), Py, Py) such that the

transfer function sub-matrices;Pz) < ng(i)xp”(j) (where Rz) = [Rj(2)];;) are such that

delay(Pj(2)) >W; if Wj < oo
(7.22)
Ri(2 =0 ifWj =00

foralli, j.

Lemma 15. Given a weighted digraply = (V,£) and n-tuplesP, Py, Py, Py and P, let P be a
networked system with sub-system dynamics give[3.By interacting over network interconnection
(3.6) where Xk) = vert[x(k)]i, u(k) = vert[u(k)]i, y(k) = vert[y;(k)]i, n (k) = vert[n; (k)]; ;¢ -+ and

¢ (k) = vert[¢ij (K)]; N- are partitioned according td?, Py, Py, Py and P, respectively. Then
tf P € T(G, Py, Pu).

Proof. Based on the hypothesis, we can see that the dynamiesah be written using7(19 where

A(q), By, Cy(q) andDy, are given by 7.20. Note thatA(q) € S(A(G.q),Px, Px), Bu € S, Px, Pu),

CY(q) € S(A(gaQ)aPyaPX) andDyu S S(I aPyaPu)-
Let P(z) be the transfer function &. Using the fact that the transfer function of delay shiftraper

qisz 1 and from @.9), we get
P(2) = Dy, + icy(z_l)(A(z_l))kBuz_k_l. (7.22)
K=
DefineRo(2) := Dyy andRy;1(2) := Cy(z 1) (A(z 1))kB, for all k € No. From Lemmag and14, and
(7.20, we see that
(A ™) € S(A(G,2 1), P Px)
= Cy(z H(AEZ ) € S(Aki1(G,27H), Py, Py)
= CY(Z_l)AkBU € S(Ak+1(g,z_1),Py,Pu)

Re(2) € S(AK(G,z7 1), Py, Pu) VkeN,.

www.manharaa.com




—

67

Note thatAo(G,z 1) = I. From (7.22) and definitions of R(2) }x, we can write
P(2)= S R(@z™*. (7.23)
(2) k; (2)

Following the proof of Lemma, it is easy to see th&(z) € S(An-1(G), Py, Pu). SinceP(z) is
partitioned according t9Py, P,) we can writeP(z) = [Rj(2)];,j, whereR;(z) is the transfer function

sub-matrix mapping input vectar; (k) to output vectow; (k). From (7.23, we get

o

Rj(2) = k;)[Rk(z)]i iz (7.24)

where[Ry(z)]ij is the sub-matrix oRy(Z), for all k. From (7.24), (7.15 and (7.1); the delay ofR;(z) is

given by

delay(P; (2)) = inf{me No: lim 27P;(2) # 0}

=inf{meNo: lim 2" S [Re(2))ijz ¥ # 0}
—00 &
>inf{me Np: Zim zZ" i[Ak(g,Z_l)]ij 7 %+£0} (7.25)
o) &

=inf{me No: lim 2" % AM-W(m)z=k £ 0, 1tis a path fromv; to vi}
k=TT

=inf{W(m) : mis a path fromv; tov;} =W

which implies thaP(z) € T(G, Py, Py). O
Theorem 6. Given a weighted digrapf = (V,£) and n-tuplesP, and Py.

1. Let Rz) be a transfer function matrix iff (G, Py, Py) with input vector (k) and output vector
y(k) partitioned according tdP, and Py, respectively. Then there exists a networked sy$tem

with sub-system dynamics given (8y5) interacting over a network interconnectidB.6) such

thattf (P) = P(2).

2. If P(2) is also BIBO stable, then there exists a stable networkeésyswhich is a strictly causal

interaction overg such thattf (P) = P(z).

Proof. The proof of this Theorem is very similar to that of the probfbeoreml.
A weighted digrapt§ = (V,£) and transfer function matriR(z) € T(G, Py, Py) are given. SoP(z)
ording:tPy; P,) and is of the fornP(z) = [R;(2)]i,;. Note thatR; (z) is essentially the
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transfer function matrix mapping; (k) to y; (k), where inpuu(k) = vert[u, (k)] andy(k) = vert[y, (k)]
are partitioned according B, andPy, respectively.

From (7.21), we see thaR;(z) = O if there is no directed path from) to v; over the digraplt and
delay(Rj(z)) > W (whereW; is the weight of minimum weight path from to v; given by (7.2),
otherwise. The condition th#; (z) € ng(i)xp”(j) anddelay(R;(z)) > W can equivalently be written
asRj(z) = zWiH;j(2) (with possible pole-zero cancellations at origin) whetg(z) € ng(i)xpu(j).
Thus (7.21) can be written as

z Wi Hij (z) if Wj <o
Rj(2) = (7.26)

0 otherwise

xPu(j)

whereH;; (z) € ng(i) for alli, j.

Wheni # j, let a minimum-weight path from vertex to vertexv; be given by
5 = 15 (0)7%; (1) ... 78 (myj),

where 15 (0) = vj and 755 (mj) = vi, i.e. my is the length of the minimum-weight path. Note that
a minimum-weight path need not have the shortest-lenggh, riy; > lij. We refer torg;(p), for
pe {1,....,mj — 1}, as intermediate vertices. L®¥;(p) denote the weight of the directed edge
(15 (p), % (p+1)) for pe {0,...,mj — 1}. ThusW; = n:z_:ij (p). We also denote the delay corre-
sponding to the network link frore; (p) to 75; (p+ 1) by tij(p), for p € {0,...,m; —1}. By (7.1), we
get thatt;j (p) =W; (p) — 1 for all p.

Consider minimal realizations &fj(z) in the following cases and define local states corresponding

to a vertex as shown below.

e Wheni = j, define local statex; (k) at vertexv; such that

Xi (K+ 1) = Aiixii (K) + Biii (k)
b (2 (7.27)

yii (K) = Ciixii (K) + Djiui (k)

e Whenm; = 1, define states;; (k) at vertexv;

(K1) = A (K) + Biui (K
1y (2): Xij (K+1) = Aijxij (k) + Bijuj (k) (7.28)

yij (K) = Cijxij (k)
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e Whenm; > 2, we define states at each vertex on the pgtlas follows

(0) _ A0
X (K+1) = Aijx;” (K) + Bijuj (k)
7 Hi(2): o o (7.29)
0 0
yi(j (k) = Cij)(i(j (k)
Note that state;(jo) (k) are defined at vertex; and the outputyi(f) (k) are passed to vertex; (1),
i.e. the first vertex in the selected path fregnto vi. At verticesr;(p), for pe {1,...,m; —1},

we define statexi(jp)(k) corresponding to unit delay systems

Pk =y k-t (p- 1)

7 (7.30)
yi(jp) (k) _ Xi(jp) (k) ]

Note that the message received by nagiep) in the communication path from noggto; is yi(jp_l) (k—

tij(p—1)). This is due to the delay over the communication link frar(p — 1) to 75;(p), for all
pe{l,....mj}.

We denote the state vector corresponding to each vertexbex (k), which is formed by appending
the statess; (k), x;i (k) Vj € ;" andx;pb)(k) wheneverg,(p) = Vi (for p€ {0,...,map—1}), i.e. when
vertexv; is a vertex on the minimum-weight path from some vengxo some other vertex,. A
network output vectorjs (k), for all r € N[, is formed by appendingi(k) and yépb)(k) whenever
Top(p) = Vi andep(p+1) = v, (for p€ {0, ..., mgp— 1}). Similarly, a network input vectofij (k), for
all j e N[, is formed by appending; (k—tij) andyg[’))(k—tij) whenevergy(p) = vj andmgp(p+1) =
vi (for pe {0,...,myp—1}). Note that network inputsfij (k) }i,j and network output$ij;i (k) }r; satisfy

the network interconnection equations
Zij(k)ZFIij(k—tij) VjEM_. (7.31)
At vertexvi, the outputy; (K) is given by

R =vi+ Y vik=t)+ Yy k—ty(my—1) (7.32)
jomj=1 jrmj=2
Thus, we can defina sub-systems{P, };, each with local stateg (k), local inputsu; (k), local outputs

yi (K), network inputsfij (k) (for all j € N;™) and network output§i (k) (for all r € ;). Following the
7.28), (7.29, (7.30, (7.32 concerning these states, inputs and outputs

—
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at each node, we can see thgk3- 1) andy; (k) are linear functions o (k), u;(k) and{fij (k)}je/\/r;
while fji (k) is only a function ofx(k) (for all r € A;"). Thus, then sub-systemgP}; satisfy the
structure given in3.5) while the network inputs and network outputs satisfy3(). Thus the transfer
function matrixP(z) is expressed as a networked systBrwhich is a strictly causal interaction of
sub-system$|fi.}i over a delay network represented by the given weighted jligfa

In the second case whé{z) is also a BIBO stable transfer function, we show that the ttangon
procedure used in the previous part of the proof also assisgesptotic stability of.

In order to check asymptotic stability & we consider the zero-input autonomous system by as-
sumingu; (k) = 0Vi, k. First, we shall separate the states define®ihgj, (3.19, (3.20 and @.2))into
two categories. The first category consists of the statesgmonding to the transfer function matrices
Rj(2) (Vi, j such tham; < 1) that were defined irB(18 and @.19. This set of states can be written as

X1(k) = vert[xj (K)]i.j: m;<1. From the state-space equations corresponding to thees,stee get
Xl(k-l- 1) = diag[Aij]Lj; mjglxl(k) (733)

whenu; (k) = 0 for all i, k.
The second category consists of the states correspondatighePR,; (z) whenm;; > 2. For example,

assume that a shortest path from vertexv; to vertexv; has length greater than 1. Then
1 = 7% (0) 7% (1) ... 7%;(myj)
wherem; > 2, 15;(0) = v; and g (mj) = vi. Corresponding to this path, the states earlier defined in
(7.29 and (7.30 arexi(jo)(k), xi(jl)(k), ey ><i(jmj_1)(k). Let us define
Xij () = vert i (K] pe o,..m;-1)
corresponding to the patfg;. From the state-space equations corresponding to thetes,ske can see
that
Aij

qi Ule j 0

qii (@] 0

Xij(k+1) = ] Xij (K). (7.34)
qi@1 0

qiiMi—21 0
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DefineXa(k) = vert[Xj (K)| (i j:2<m; <n} as the set of states correspondind?{¢z) whenm; > 2. Note
that X; (k) and Xx(k) constitute all the states defined corresponding tontsab-systemgP };. From
(7.33 and (7.34), we can see that the—matrix corresponding to the dynamics [@ﬁ;gm is block lower
triangular with{Ajj }; ; on the diagonal and the rest of the diagonal terms being zero.

By hypothesisP(z) is BIBO stable which implies thgtP; (z) }i j are all BIBO stable, which in turn
implies that{H;;(2)}i ; are all BIBO stable. Note that, we assumed minimal reabnatiofR;(z) and

Hij () in (3.18), (3.19 and @.20 which implies that the matricgg;; }i j are all Schur-stable. Thus, we

can see that thA—matrix of the networked realizatidR is also Schur-stable based on Lemb3a [

From Lemmal5and Theoren®, we can see that given a weighted digra@ptany networked system
that is a strictly causal interaction ovérhas a structured transfer function matrix that has sparsity
and delay structures correspondingg@oand vice versa. This is true when there are no additional
conditions imposed on the systems. If the systems are edmetl to be stabilizable and detectable,
we notice that Theorerd cannot be extended for any general unstable structuredférafunction
matrix in T(G,Py,Py). Due to this network realizability problem, unstable netkenl systems (that
are stabilizable and detectable) cannot be representad esuctured transfer function matrices in

(G, Py, Pu).

7.2 Networked plant model

A networked planP is modeled as a strictly causal interaction of sub-systexasn(@.1)) over a
given weighted digrapty, with each sub-system including local exogenous inputoregt k) and local

regulated output vecta (k). The state-space description of the sub-systéifng are given by

xi(k+1) = Aix (k) + Bi'wi (k) + B'ui (k) + Y Bﬁ Zi (k)

JENT
7(K) = Cixi (K) + DPwi(K) + DR (k) + Y Dff &y (K)
P: JENT Vie{l,...,n} (7.35)
yi(k) = Clx (k) +D"wi(k) + ¥ DY gij(K)

JeN™

nri(K) = Cxi(k) Vr € A
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wherex; (k) denotes the local state vectoy;(k) local exogenous input vectoz, (k) local regulated
output vectory; (k) local control input vectoty; (k) the local measurement output vector,(k) (for all

r € N;") the local network outputs arg (k) (for all j € ;") the local network inputs corresponding to
a sub-syster®. The discrete-time network interaction equations cowadmg to the weighted digraph
G are given by

Gij (k) = nij(k—=tij) ¥ (vj,w) € (7.36)

wheret;; denotes the network delay according Tolj.
Combining .35 and (7.36), the network inputs and outputs can be eliminated to gieesthte-

space equations for the sub-systems as

X (k+1) = Aixi (k) + B'wi (k) + Blui(k) + 5 Ajjxj (k—tij),

JeNT
zi(k) = Cixi(K) + D" (k) + DI (k) + 5 Cixj(k—tij) i e {1,...,n} (7.37)
JeN™
yi(k) =Cix(K)+DV"wi(k) + Y Cixj(k—t),

JENT
whereAj == Bﬁc{} ,Ch = Dizfci']? andC}; := Diyfci'} . Using the delay shift operatay, the state-space
equations in7.37) can also be concisely written as
xk+1)| |A@ Bw Byl |xK
Pil zk) | =|Cid) Daw Dal| |W(K) (7.38)
y(k) Cy(a) Dyw O | [u(k)

whereA(q), By, andC, are given by 7.20 while
Cr ifi=]j

[Ca(@)lij = i CEif (vj,w) €€
(7.39)

0 otherwise

By =diag[B"]i, D,w=diagD?"i, D,,=diagD?}i, Dyw= diag[D}"]:.
Note thatx(k) := vert[x;(K)];, w(k) := vert[w; (K)]i, u(k) := vert[ui(K)];, z(K) := vert[z (K)]; andy(k) :=
vert]y;(k)]; denote the complete state, exogenous input, control impgtjlated output and measure-

erresponding to the networked systemd be partitioned according 1, Py,
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Pu, P, and Py, respectively. From7.37), and the partitions af(k), w(k), u(k), z(k) andy(k), we can

see that

A(Q) € S(A(G.q),Px;Px), Bwe SI,Px,Pw), Bue I, Px,Pu),
CZ(q) S S(A(gaq)aPZa PX)a DZWe S(l 7P27PW), DZU S S(I ,Pz,Pu), (740)

CY(q) € S(A(qu)7PY7PX)7 DYW € S(I >Py>73w)-
7.3 Allinternally stabilizing networked controllers

In this section, we extend the parameterization describetheorem? to the case when stabiliz-
ing controllers are constrained to be networked systemsatieastrictly causal interactions over delay
networks. In this case, the plaBtis also a strictly causal interaction over the given delayvoek.

In order to parameterize internally stabilizing networkeahtrollers, first a model based controllkis
chosen to be a networked system based on approptiateandL. Then TheorenY shows that choos-
ing the Youla parametdD to be a stable networked system will parameterize the &igjlnetworked

controllers for the given networked plant.

Theorem 7. Given a weighted digraply and a stabilizable and detectable networked plant P that
is a strictly causal interaction ovef with the sub-system dynamics given(By35 and the network
interaction given by7.36). Let the state-space representation for P be giver(h88 with state-
space matrices structured and partitioned accordindt®0 and (7.39). Given there exist matrices
F(q) € S(A(G,q),Pu, Px) and L= diag[Li}i € S(I,Px,Py) such that(zl — A(z"!) — B,F(z*1)) and

(zl - A(z 1) — LCy(z"1)) have full-rank for any = (C\]ﬁ. Then the set of all internally stabilizing

FDLTI controllers for P, which are also strictly causal imgetions overg, is parametrized by
K =1ft(J,Q), (7.41)

where J is a strictly causal interaction ovérwith a state-space representation

x(k+1) A(@) +BuF (@) +LCy(a) | -L Bu | | xi(K)
ol ulk) = F(a) 0 1 || vk (7.42)
£(k) -G(a) Lo ||k
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and any asymptotically stable networked system Q withrassfer function matrix ing(G, Py, Py).
Note that the vectors¥k) := vert[x(K)];, & (k) := vert[& (k)] and ¢(K) := vert[i(K)]; are partitioned

according toPy, Py and Py, respectively.

Proof. First, we show thal given in (7.42) is in fact a observer-based nominal stabilizing contrdibe
the networked plarf?in (7.38). Using the sub-matrices &{q), By, Cy(q), F (q) andL from hypothesis;

(7.42) can be written as

Kk+1) = 5 (Aj+BIFj+LCHX (k—tij) — Liyi(k) + Byr (K),

JeN; Ui}

uk) =y Fyx(k—tij)+ (k) (7.43)
jeN T U{i}

Gl= 5 (~CHxKk-tj) +yi(k).
jeN T U{i}

wheret; = 0 (for all i) andt;; is given by {.1) (for all j € ;). Combining 7.38 and (.43, we can
eliminate the variable$u; (k) }i and{y;i(k)}; to get the dynamics of :=Ift (P,J) as

Xkt = 5 Apgk—t;)+B [Wi(k)‘-pi(k)]

Mot} Vie{l..,n}  (7.44)

[Za(k)fi(k)] = 5 Cix(k—tj)+Df [Wi(k)w,(k)]

JeN Ui}
herex” (k) = [ %™, | and
wherex; (k) = % (-9 | an
1. |Ai+BR B . BY BU
AIJ = s Bi = ,
0 Aij—i-LiCi)E B}N—i-LiDin 0 ( )
- 7.45
. |ci+DMR -DPR| . |Df* D
Gj = , Dl := ,
0 Cl D™ 0

Based on hypothesis th@l — A(z"1) — B,F(z 1)) and(zl — A(z"1) — LC,(z 1)) have full rank for any
ze C\]ﬁ, we notice that the networked syst@nin (7.44) is asymptotically stable based on Lemfga
ThusJ is a stabilizing controller oP. From (7.45, we can also see that the transfer function matrix

from g (K) to & (k) (for anyi andj) is a zero matrix.
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First, assume tha® is an asymptotically stable networked system with it's $fan function in
T(G,Pu, Py). Thus,Q has dynamics of the form
Xkt 1) = AR +BREK + 5 AN (K=1t)
JEN”

Gk =CRM+DR&E(K) + § CHR(k—t;).
JENT

Vie{1,...n (7.46)

Since the transfer function frony(k) to & (k) is zero andQ is asymptotically stable, the closed-loop
transfer functionlft (T,Q) is always stable. Using the standard Youla-KuCera pareniaation argu-
ments, we can see that the controller givenkby- Ift (J,Q) internally stabilizes the given plaftin
(7.38 whenJ is given by .42 andQ is an asymptotically stable system. Next, we show that there
ists a strictly causal interaction ovérwhich has the same state-space representatitin(aQ) when
Qs a strictly causal interaction ovér.

Combining equations in7(43 and (7.46), we eliminate the variableg; (k) }i and{ ¢ (k) }; to write
the state-space equations corresponding tolft (J,Q) as

Xkt = 5 ANX(k=t))+Byi(K)
jeNUg)

Vie{l...,n} (7.47)
u(k) =y  Cix§(k—tj)+Dvi(k)
jeN; U{i}
wherex (k) = [Wﬂ and
X2 (k)

A Aj+BUR; +LiCh —BIDRCY  BYCY oK. ~L;+BDY

! —B°CY A? ’ I BQ ’

1 1] ] i

K._ K. RQ

Gij = [F.,- —D?Cﬁ Cﬂ, DI :=Dy.

Extending the results of Lemntato networked systems over delay networks, we can see ) (s
equivalent to a strictly causal interaction ogewith the same state-space matrices agia7).

On the other hand, given matrice¢q) andL such tha{zl —A(z"1) —B,F(z 1)) and(zl —A(z" %) —
LCy(z1)) have full rank for anyz € C\D, standard results on Youla parameterization show that any
internally stabilizing controller for the plam is given byK = Ift (J,Q) whereJ is given by .42 and

a stable, causal, FDLTI syste@. Now, assume tha is a strictly causal interaction ovér, which
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implies thatK has a state-space realization of the foif{). Then, it is easy to see thKtinternally

stabilizesJ given by

xj(k+ 1) A@) | —L Bu | | x5k
Bl e (= -F@]o 1 || €k (7.48)
y(K) Gl | I 0 ]| uk

wherex;(k) is partitioned according t®y. Following a similar procedure as before, we see Qat
Ift (J,K) is a stable strictly causal interaction o@whenevel is an internally stabilizing networked

controller forP. O

Theorem? requires matrices (q) € S(A(G,q),Pu, Px) andL = diag|Li]i € (I, Px, Py) such that
(zI—-A(z 1) —BF (z 1) and(zl — A(z 1) — LC,(z 1)) have full-rank for ang € C\D. These matrices

can be obtained using Lemniand LemmaB. We describe the procedure through a simple example.

7.3.1 Example

Consider a networked systedover a delay network as shown in F&j1, with dynamics described

by (7.3 as

Xl(k+1) A1 qA12 O Xl(k) Bg 0O O up k)
Xz(k—{—l) = 1A Ax 0 Xz(k) +10 Bg 0 Uo k)

X3(k+1) 0 Azo %3_ _Xg(k)_ _0 0 Bg Us k)

(
(
(
- S0 L (7.49)
y1(K) Ciu qCz 0 | |x(k) DY 0 O r K)

yz(k) - C21 C22 0 Xz(k) + 0 D%u 0

ya(K) 0 Gz Gas| |xa(k) o o DY

In order to find appropriate (q) € S(A(G,q), Pu, Px) andL = diag|Li];i € (I, Px, Py), we first write

the dynamics oP in (7.49) using a network state vectsg(k) := x2(k) as

X(k+ 1) = AX(K) 4 Bu(k)

y(k) = CyX(K) + Dyuu(k)

(7.50)
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where
X]_(k) A11 0 0 A12
)Rk) - Xz(k) ’ A_\:: A21 A22 0 0 ’
x3(K) 0 A Az O
Xa(K) 0 | 0 0
: N o N (7.51)
BY 0 O
Ch1 O 0 Cp
_ 0 B O _
Bu = ’ Cy:z C21 C22 0 0
0 0 Bj
0 Cs C33 O
_0 0 0_
Now, use Lemmd to obtain
Fip. O 0 Fpo
F=|Fy Fp 0 0 (7.52)

0 F2 Rz O
such thatA -+ ByF is asymptotically stable. This can be obtained by imposipgrapriate sparsity

constraints or andR in (4.13. Following the structure of in (7.52), it is easy to obtain the required

F(q) € S(A(G,q), Py, Py) from F as

Fii. gF2 O
Fl@)=|F1 Fp 0]- (7.53)
0 Fz Fs3

Lemmal3 assures thaizl — A(z"1) — ByF (z°1)) has full rank for allz € C\D whenF(q) is obtained
from F such thatA + B,F is asymptotically stable.

Similarly, use Lemma to obtain

1, 0 o0

_lo L o

L= (7.54)
0 0 Ls
0 0 0

such thatA + Iffy is asymptotically stable. This again can be obtained by simgpappropriate sparsity

4). Following the structure df in (7.54), itis easy to obtain the required
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L e S(1,Px, Py) fromL as

L, 0 O
L=]0 L, 0]- (7.55)
0 0 Ls

Lemmal3assures thazl — A(z 1) — LC,(z 1)) has full rank for allz € C\D whenL is obtained from

L such thaiA+ LC, is asymptotically stable.

7.4 Optimal solution for networked controller design problem

Let G denote the weighted digraph representing a general detayorieinteraction. Given a net-
worked plant? with sub-system dynamics following@ 35 that are interacting over a network specified
by (7.36). Following the discussion in Sectich3, the norm-minimizing network control problems
where the controller is constrained to be a strictly caugaraction over the give@ can be written as

min Tzl o

subjectto K is a strictly causal interaction ovér, (7.56)

T,w is asymptotically stable

whereT,,, = Ift (P,K) denotes the closed-loop mapping frev(k) to z(k), anda = 2 or co. Based on
Theorem?, the set of internally stabilizing networked controllerst are strictly causal interactions
overg are parameterized &= Ift (J, Q) whereJ is given by .42 andQ is a stable networked system
overg with tf (Q) € T5(G, Py, Py). If there exist matriceE (q) andL such thatzl —A(z 1) —B,F(z 1))
and (zl —A(z'1) —LC,(z 1)) have full rank for anyz € C\D, then the set of all closed-loop transfer
function matrices fromv(k) to z(k) for an internally stabilizing networked controller (whiha strictly

causal interaction ovey) can be given by

Caw'= {T12(2) + T12(2)Q(2) T21(2): Q(2) =tF(Q), Q€ &%(G, Py, Py)} (7.57)
where
Ti1(2) Ti2()|  |Dzw Day = CozY)+DuF(zh) —DaF(zh)
T21(Z) T22(Z) Dyw 0 k= 0 Cy(Tl)
‘ (7.58)
Az Y +ByF(z?Y) —ByF(z1) Bw Bul . .,
z
0 Az Y +LC(zY)| |By+LDyw O
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From (7.58), it is easy to note thal,,(z) = 0. The norm-minimization networked control problem in

(7.56 can be written as

min I Tzwl|
. fora =2 oreo (7.59)

subjectto T,y € €y

whered,, is given by 7.57) which can equivalently by written as

min  [|T1a(2) + T12(2)Q(2) T21(2) |4
for o =2 oroc. (7.60)
subjectto Q(z) € (G, Py, Py)

This problem is exactly the same @20 and the vectorization idea used in Secttb8can be used to

write the’H, networked control problem as an unconstraiftédproblem

min  |lvedT11(2) + (T21(2)' ® T12(2))S(2H (2) |,

subjectto H(z) e RH21,

(7.61)

whereS(z) andH (z) are given by 4.22). The unconstrained convex optimization problem Ar6()
can be solved using standard techniques. H&tz) denote the solution of the optimization problem
(7.61). Then the corresponding optim@t(z) is given byQ*(z) = vec }(S(2)H*(2)) € T5(G, Py, Py).
Following the proof of Theoren, the corresponding internally stabilizing controll€t is obtained
based onJ given by (7.42 andQ*(z). From Theorenv and the problem formulation in7(56), we
can see tha* thus designed is the optimal internally stabilizing netikeot controller that is a strictly

causal interaction ovej for the given networked plarR.
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CHAPTER 8. Numerical examples

8.1 Example for Theorem1

Let a unit-weight digraply = (V,£) be given (as shown in Fi®.2(b), whereV = {v1,v,,v3} and

E ={(v1,v2),(v2,v1), (V2,v3)}. Let Py = (1,1,1) andPy = (1,1,1). Let the transfer function matrix of
a stable structured system o¥gbe given by

z+1 0.5
z—05 z—0.8 0
— —0.1 z+0.1
P(Z) z—05 z—01 0 (8'1)
1 0.3 z—0.2

(z—0.1)(z—0.8) z-08 z-05

Note that 8.1) satisfies the delay and sparsity constraiftdl) corresponding to the digragh Thus

P(z) € (G, Py, Pu). Following the notation from Theorehy we write the minimal state-space real-
izations

z+1 X11(k+ 1) 0.5 ‘ 1 X]_j_(k)
Pu(?) = z-05 B ’
’ y]_j_(k) 15 ‘ 1 Ul(k)
0.5 X12(k+ 1) 0.8 ‘ 0.5 Xlz(k)
Pa(2) = =58~ - ’
’ ylz(k) 1 ‘ 0 Uz(k)
—01 X21(k—{— 1) 0.5 ‘ 0.25 X21(k)
Pa(® = =55~ - ’
’ y21(k) -04 ‘ 0 Ul(k)
z+0.1 X22(K+ 1) 0.1 ‘ 0.5 Xzz(k)
Poal(2) = z—01 - ’
’ yzz(k) 0.4 ‘ 1 Uz(k)
09 -032|1
L z Xa1 (k+ 1) X1 (K)
Z "Ha1(2) = 2R (2) = Z—0D(z—08 o =025 0 |0 :
' ' Ya1 (K) u (k)
1 0 0
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L [een ] [ofa] [
Z — = ,
1 0
(0 110 ] [ v
0.3 x32(k+1) 08|05 x32(K)
Pa(?) = =58~ - ’
’ y32(k) 06| O Uz(k)
z-02 xa3(k+1) 05|05 | | xa3(k)
Puld) = z—05 -
’ y33(k) 06| 1 Ug(k)

In the graphg, the shortest path (with length 2) from vertexto vertexvs is given byv; — v, — v
and the corresponding states are definedé%jk) andxgll) (k). Thus the pathi; = v; v» vz andlz; = 2.

Following the proof of Theorert, we define state vectors corresponding to each node to be

Xlz(k)
Xll(k)
3 3 X22(K) 3
1K) = [ x(k) |, (k) = o Ka(k) =Xa3(k).
X (k) xaa(k)
* XK

The outgoing messages from each node are given by

. y21(K) . . y32(K)
N21(K) = , Ma(k) = K|, fAs2(k) = ,
21 y(;f(k) 12 {)ﬁz( )] 32 y(311)(k)

and the outputs at each node are given by

y1(K) = y11(k) +y12(k),
Y2(K) = y21(K) +y22(k),

ya(K) = Va1 (K) + ya2(K) + Yaa(K).

Since the network represented §yis noiseless and has zero-delay, the incoming messageyvedtto

each vertex are given by

Q12(K) = fira(K),  Qa1(k) = fiza(K),  {aa(k) = fiza(K). (8.2)

www.manharaa.com




82

Using the state-space matricesRjf(z), the dynamics at each vertexare defined as a sub-system

P, given by
05 O 0 0 110
0 05 0 0 |025|0
%1 (K+ 1) 0 0 09 -032| 1 |0]| %K
P | vk 0 0 025 0 | 0 [0]] wk |,
fi21(K) 15 0 0 0 | 1 |1|| &k
0O -04 O 0 0 |0
0 0 1 0 0 |0
-08 0O O 0/05|0 0-
0O 01 O 0|05|/0 O
- (8.3)
%o (K+ 1) 0O 0 08 0/05/0 0
— %2 (k)
i ya(K) 0O 0 0 00|01
PZ: Uz(k) )
Aia(K) 0 04 0 0/ 1|1 0]]|—
. {1(k)
fiaa(K) 1 0 0 00|00
0O O 06 0, 0|0 O
i 0O O O 1,010 0_
i X3(k)
.| Ra(k+1) 0.5‘0.5‘0 0
Py us(K)
y3(K) 0.6‘ 1 ‘1 1] |—
- {32(K)

The sub-systemé&P,}; in (8.3) interacting over the network interconnectidhd) describes the net-

worked systen® corresponding t®(z). Combining the equations i8(3) and 8.2), we get the state-
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space representation féras(A, Bu,Cy, Dyy) where

_ 05 O 0 0 0O 0 O 00O _ _ 1 0| O _
0O 05 O 0 0O 0O O 0O 025 0| O
0O 0O 09 -032, 0 0 0 0O 1 0| O
0 0 025 0 0O 0 O 0O 0 0|0
A=l 0 0 0 0O |08 0 0 00 |, Bu= 0 [05| 0
0O O 0 0 0O 01 0 0O 0 |05] 0
0O O 0 0 0O O 08 0|0 0O [05| 0
0O O 1 0 0O 0 0 00O 0 0| O
0O O 0 0 0 O O 0]05 0 0 |05
[ 15 0 O0 01 O O OO 1/0|0
&G=| 0 -04 0 0/0 04 0 0|0 |, Duw=]|o0|1]|0
| 0 O O 00 O 06 1|06 0|01

when the state, input and output vectors are giver(ky= vert[%i (k)];, u(k) = vert[ui(k)]; andy(k) =
vert[y;(k)]i, respectively. Note thak is Schur-stable an@A, B,,Cy, Dyy) € &(G, Px, Py, Pu) WherePy =
(4,4,1), Py = (1,1,1) andPy = (1,1,1). By calculating the transfer function matrix corresporglio
P, we can see that(P) = P(2).

8.2 Example for designing networked controllers over zeradelay networks

Using this example we explain the concepts and algorithsmudsed in Chapt&and Chapted to
solve aH, networked control problem. We consider a strictly caustraction of 3 sub-systems over
a zero-delay directed communication network represengedumit-weight digraply; given in Fig.3.2

Let the 3 sub-systemiR }ic123) Of the form @.1) be expressed in their state-space representation as
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given below
01 08 |01 0O0|01|]04 O
- . 03 -05(01 0/01|] O 0.2 - .
Xl(k+ 1) Xl(k)
E— 02 01 O 1, 0 |03 02
z(K) wy (K)
P: |———| = 0 0 0O 0] 1 0 0 )
y1(K) uz (k)
—_— 02 01 0O 1| 0 |03 02
I’]z]_(k) ZlZ(k)
- - 1 0|0 000 0" -
0 1 0O 0|0 0 0
-06 13| 0 0| 0 |14 0
05 02|02 0/02| 0 -03
Xo(k+1) 01 01| 0 1/ 0|01 -03 | -
— X2(K)
2>(K) O o0|O0 O/ 1]0 © (8.4)
— w2 (K)
P, y2(k) |=] 01 01/ 0 1| 0|01 -03 :
uz(K)
N12(K) 1 0]0 0/0]0 O
{o1(k)
Naa(k) o 1|0 ofo|0 o0 | -
1 0 0O 0] O 0 0
0 1 0O 0|0 0 0
1.2 0|04 0/04| 01 0 B 7
x3(K)
xa(k+1) 03 04/ 0 0/ 0| 0O -08
B ws(K)
P:| zKk |=|0104/0 1|0 |-01 03 :
— uz(Kk)
ya(K) 0 0|0 o[1| 0 0O
{32(K)
01 04| 0 1| 0 |-01 03 - -

and the zero-delay network interconnection4r?y is given by

C12(k) = Mma(k),  Z21(k) = N21(k),  {za(k) = N32(K).

By interconnecting the three sub-systems over the netweekget the networked systeRwith
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following state-space matrices

(01 08| 04 0

0 0
03 05/ 0 020 o
14 0 |-06 13| 0 0
A= ,
0 -03/05 02|0 0O
O 0|01 0 |12 o0
0 o | o -08|03 04|
(01| 0| 0 ]
01| 0| 0
02 0103 02/0 o0
olo|o
By = , C=|01 -03/04 01|/ 0 O
002 o
O 0 |-01 03|01 04
0l 0|04
ofo|o

The other state-space matrices can also be obtained frosubiieystem dynamics and the network
interconnection. Note tha& is an unstable system sinéehas eigenvalues outside the unit disc. For
comparison purpose, an optimal internally stabilizingtaized controllerKcentral iS computed using
standard techniques and the corresponding optimal costas 9y ||Ift (P, Kcentral) |, = 25.6203. Fol-
lowing Lemma7 and Lemm&B, we obtain following matrice& andL so thatA+ ByF andA+LC, are

Schur stable.

_4.4408 21392 | —0.0012 —35507| O 0
F=| 29020 —19631|-47372 15855 | 0 o |,
0 0 | —04561 04437 | —3.0970 —0.1546
[ _19583| 0 0o |
_03447| 0 0
| o |z o
0 |-38995 0
0 0 |-13975
o 0 |-01351
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Note thatF is structured according td(G) while L is block-diagonal. We can construct the following

observer-based networked controller

A+ByF +LCy ‘ L

(8.5)

Knom =

F ‘ 0
using the matriceb andL. Note thatK,on, iS a stabilizing controller that is a strictly causal interan
overg. Also, note thaK,omis a full-order controller. In this example, this nominatwerked controller

is unstable and gives a performance cosflfif(P, Knom)||, = 157.7915.

In order to find an optimal networked controller, we first ugedrem?2 to parameterize the set of
all internally stabilizing networked controllers for the/gn networked plant based on the matriées
andL. Then following the formulation given in Secti@n3, we obtain the optimal internally stabilizing
networked controlleKqp: that is a strictly causal interaction over the given netwdrke performance
cost||Ift (P, Kopt) ||, for this optimal controller is 52338. The optimal controller is not presented in
the thesis due to its large order but we shall present sonoeniiaftion about the controller to better
appreciate the optimal solution.

First, the order of the optimal networked controller is 62anéhthe sub-systeni§;, K, andKs have
order 22, 24 and 16, respectively. Note that in the case dfaleaed problem, the optimal controller
can be full-order, i.e. it has order 6. The networked coldrdias larger order to compensate for the
lack of full communication. The optimal cost provided by amtimal networked controller can also be
used as a bound in designing sub-optimal reduced-ordeonetal controllers.

Second, the optimal networked controller is non-minimal isustabilizable and detectable such
that the closed-loop system is internally stable. Last otiieast, we note that the optimal networked
controller is unstable with two unstable poles a6P9. So, if we had used a transfer function based
approach (for exampleg]) to design an optimal stabilizing controller with a struietd transfer function
matrix, it is not known how to realize the unstable transtarction matrix as a stabilizing networked
controller over the given network. In essence, we providegimal stabilizing networked controller
and also provide a methodology to implement it over the gimetwork even when the stabilizing
controller is unstable.

For the same plant, using the results from Chaptere also found a full-order internally stabilizing

networked,controlleKsypthat is a strictly causal interaction over the givenThe full-order controller
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Krun = (Ax,Bk,Ck,Dk) is given by the following state-space matrices

[ 03723 —00925| 7.847 -2169| 0 0 |
1707 -0972 | 3992 —04528| © 0
. 1676 -1164 | -1914 6447 | © 0
K — )
5281 -3675| 5969 2012 0 0
0 0 |-2787 1056 |-5641 O
0 0 3217 -1216 | 7.391 7107 |
[ 01409 © o |
01209 | 0 0
_548| 0 0
0 |o03864| 0
Bk = , Dk = 0 -2612| 0 ,
0o |1225| o0
0 0 |1092
0 0 |-00513
o 0 | 00582 |
2813 1224| -7691 1984 | 0 0
Ck=| -7733 5554| 9114 -3001| 0 0O
0 0 | 6849 -2167|1606 1373

and the performance coift (P, K ) ||, for this full-order controller is 99587.

8.3 Example for designing networked controllers over genexl delay networks

Using this example we explain the concepts and algorithswudsed in Chapt&rto solve aH» net-
worked control problem in the general delay network case cWvisider a strictly causal interaction of
3 sub-systems over a directed delay network representeaviejghted digraply given in Fig.3.1 Let
the 3 sub-systemiR }ic 123, be expressed in their state-space representation givehdyrteracting

over a delay network interconnection given by

C12(k) = Ma(k—1),  &a1(k) = N21(K),  dz2(kK) = N32(K).
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By interconnecting the three sub-systems over the netweglkget the dynamics of the networked

systemP with following state-space matrices

(01 08 /049 0 |0 O
03 05| 0 02q| 0 O
14 0 |-06 13| 0 0
A@Q) = ,
0 -03/ 05 02|0 o
o 0 ]01 0 |12 0
| 0 0| 0 -08/03 04
(01l 0|0 ]
01| 0| 0
02 01 |03q 029/ 0 O
olo|o
Bu= , G(a)=]01 -03/ 04 01|0 O
002 0
0O 0 |-01 03|01 04
0| o004
o] oo |

The other state-space matrices can also be obtained frosutiieystem dynamics and the network

interconnection. Note tha® is an unstable system sin¢el — A(z 1)) looses rank whemz = 1.2,

For comparison purpose, an optimal internally stabilizogptralized controlleKgentra is computed

using standard techniques and the corresponding optinsaisgiven byl|Ift (P, Kcentral) ||, = 3.5035.

Following the procedure described in Sectib.1, we obtain the following matriceB(q) andL so

that (zI — A(z 1) — ByF (z 1)) and(zl — A(z 1) — LC,(z 1)) have full-rank for allz € C\D.

~1.6363 16519| —1.245q —1.458q

0

0

F=1] 29983 00202| —-3.9174 18998

0

0 )

0 0 —0.4093 04682

—3.0687 —0.1586
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[ _15276| 0O 0o |
01740 | 0 0
| o |uzem| o
0 |-58m5 0

0 0 |-14985

o 0 |-01939

Note thatF(q) is structured according tal(G,q) while L is block-diagonal. We can construct the

following observer-based networked controller

A(q) +ByF(a) +LCy(a) ‘ —L

(8.6)
F (@) o

Knom =

using the matrice& (q) andL. Note thatknom is @ stabilizing controller that is a strictly causal inter-
action overg. Also note thai,om is a full-order controller. In this example, this nominakmerked
controller is unstable and gives a performance cogtfofP, Knom)||, = 1304313.

In order to find an optimal networked controller, we first udeedrem?7 to parameterize the set
of all internally stabilizing networked controllers forettgiven networked plant based on the matrices
F(gq) andL. Then following the formulation given in Sectioh4, we obtain the optimal internally
stabilizing networked controllei{op; that is a strictly causal interaction over the given delatyvioek.
The performance co$|1|ft (P, Kopt) ||2 for this optimal controller is $266. In this example, thi€,p; was

found to be asymptotically stable but with a large order.
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CHAPTER 9. Conclusions

In this thesis, we studied the class of networked systemstbhanade of finite-dimensional, linear,
time-invariant, causal, discrete-time sub-systems aatarg over a noiseless, pure-delay, discrete-time
network, all sharing the same clock. We first studied the gdsen the discrete-time network has no
delays. We showed that the networked systems built on adedey network can be represented using
systems with structured state-space or transfer functiatrices, in general. But in the case when
the networked systems are constrained to be stabilizalledetectable, we point out that structured
transfer function matrices cannot be used to representdtveorked systems due to the problem of
network realizability. “Given an unstable structured s&@n function matrix, it is not known how to
realize it as a stabilizable and detectable networked isysteer a given network.”

Next, we studied the networked control problems where tingralber is required to be a networked
system that internally stabilizes a given plant. In thisse®, we observed that transfer function based
approaches are not suitable to solve the networked contoblgms since the stabilizing controllers
obtained as solutions to such approaches can in generastablen And due to the network realizability
problem, such solutions may not be realizable over the gidwork while assuring stabilizability and
detectability. Instead, we used the relationship betwestwarked systems and structured systems
to parameterize all internally stabilizing networked cohiers using the state-space form of Youla-
Kucera parameterization. Thus, synthesizing optimatagted controllers is shown to be a constrained
convex optimization problem. In the casel®f networked control, the constrained convex optimization
problem is reduced to an unconstrained convex optimizgtioblem which can easily be solved using
standard techniques.

Since the optimal networked controllers can possibly hdaege order, we also provide methodolo-
gies to design full-order internally stabilizing netwotkeontrollers by extending the results a#]. We

also solved the networked estimation problem by posing drasquivalent networked control problem
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and use the results obtained for networked control. Nexistwdied the networked systems when the
network interaction can have any arbitrary delay structUrgng the shift delay operator used 8},[we
extended the framework developed for systems over zeaydatworks to systems over any general
delay networks. Finally, we provided numerical exampleddscribe the main results of the thesis.

We thus studied the problem of designing networked comtr®lfor networked plants when both
plant and controller are constrained to be on the same nletince the transfer function approaches
can not address the network realizability problem, we psedca state-space approach for parameter-
izing all internally stabilizing networked controllersathallows one to synthesize optimal networked
controllers that stabilize the given plant and can be eggeas sub-systems interacting over the given

network.

9.1 Directions for future work

As future research work, it would be interesting to studyrbéwvork realization problem in more
detail. One can also look at model reduction techniquesaggtre stabilizability and detectability while
reducing the order of a networked system. Presently, theankéd controller design procedure pro-
posed in this thesis is centralized, i.e. the controllerlmadesigned only with the complete knowledge
about the networked plant model. One can study distribugsihd and synthesis techniques that allow
more scalability to the networked controller design probleSince the framework used for networked
controller design is based on classical Youla parametaizanany of the results in control theory that

are based on Youla parameterization may be extended to rketvoontrol.
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