
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2012

Optimal networked controllers for networked
plants
Satya Mohan Vamsi Andalam
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Andalam, Satya Mohan Vamsi, "Optimal networked controllers for networked plants" (2012). Graduate Theses and Dissertations.
12754.
https://lib.dr.iastate.edu/etd/12754

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12754&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12754&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Fetd%2F12754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/12754?utm_source=lib.dr.iastate.edu%2Fetd%2F12754&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Optimal networked controllers for networked plants

by

Satya Mohan Vamsi Andalam

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Electrical Engineering

Program of Study Committee:

Nicola Elia, Major Professor

Wolfgang Kliemann

Umesh Vaidya

Aditya Ramamoorthy

Namrata Vaswani

Iowa State University

Ames, Iowa

2012

Copyright c© Satya Mohan Vamsi Andalam, 2012. All rights reserved.



www.manaraa.com

ii

DEDICATION

I would like to dedicate this thesis to my parents and my dearest wife. Thank you for all the love

and support.



www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. vi

CHAPTER 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 1

1.1 Motivational example . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 2

1.1.1 Quadratic invariance . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 4

1.2 Organization of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 5

CHAPTER 2. Preliminaries and Notation . . . . . . . . . . . . . . . . . .. . . . . . . . . 7

2.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 7

2.2 Linear algebra and Matrices . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 9

2.3 System theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 12

CHAPTER 3. Networked systems . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 15

3.1 Discrete-time networked system . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 15

3.1.1 Graphical representation of discrete-time networked systems . . . . . . . . . . 16

3.1.2 Networked systems over zero-delay network . . . . . . . . .. . . . . . . . . 18

3.2 Structured systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 20

3.2.1 Structured realizability . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 25

3.2.2 Structured systems as Systems over networks . . . . . . . .. . . . . . . . . . 26

CHAPTER 4. Internal stabilization of networked plants using networked controllers . . . 29

4.1 Networked plant model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 29

4.2 All internally stabilizing networked controllers . . . .. . . . . . . . . . . . . . . . . 31

4.2.1 Sufficiency conditions for constructingF andL . . . . . . . . . . . . . . . . . 34

4.3 Optimal solution forH2 andH∞ networked controller design problems . . . . . . . .36



www.manaraa.com

iv

CHAPTER 5. Full-order networked controllers . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Full-orderH2 networked controller design . . . . . . . . . . . . . . . . . . . . . . . .40

5.2 Full-orderH∞ networked controller design . . . . . . . . . . . . . . . . . . . . . . .46

CHAPTER 6. Networked estimation . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 51

6.1 Networked filtering for networked systems . . . . . . . . . . . .. . . . . . . . . . . . 51

6.1.1 Parametrization of all stable networked estimators .. . . . . . . . . . . . . . 54

6.1.2 Optimal networked estimator . . . . . . . . . . . . . . . . . . . . .. . . . . . 57

CHAPTER 7. Networked systems over delay networks . . . . . . . . .. . . . . . . . . . . 60

7.1 Structured systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 65

7.2 Networked plant model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 71

7.3 All internally stabilizing networked controllers . . . .. . . . . . . . . . . . . . . . . 73

7.3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76

7.4 Optimal solution for networked controller design problem . . . . . . . . . . . . . . . 78

CHAPTER 8. Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 80

8.1 Example for Theorem1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.2 Example for designing networked controllers over zero-delay networks . . . . . . . . 83

8.3 Example for designing networked controllers over general delay networks . . . . . . . 87

CHAPTER 9. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 90

9.1 Directions for future work . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 91

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 92



www.manaraa.com

v

LIST OF FIGURES

Figure 3.1 A simple example of a discrete-time networked system model made of 3 sub-

systems interacting over a discrete-time network. . . . . . . .. . . . . . . . 17

Figure 3.2 A simple example of a discrete-time networked system model made of 3 sub-

systems interacting over a zero-delay network representedby a unit-weight

digraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Figure 4.1 A networked controller in feedback with a networked system over the same

zero-delay network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

Figure 4.2 Feedback interconnection of the networked plantP and a parametrized con-

troller K = lft (J,Q). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 6.1 Networked plantP and a networked estimatorE in terms of their sub-systems

{Pi}i and{Ei}i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 6.2 An equivalent model using a generalized plantG in a feedback interconnection

with the networked estimatorE. . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 6.3 Representing an estimation problem as a feedbackinterconnection of general-

ized plantG and a parametrized estimatorE = lft (J,Q). . . . . . . . . . . . . 56



www.manaraa.com

vi

ABSTRACT

In this thesis, we study networked systems composed of discrete-time systems interacting over

discrete-time networks. These systems are emerging in manyapplication areas and require new dis-

tributed control and estimation design methodologies. Most existing approaches represent networked

system models by structured system models (systems with structured state-space or input-output rep-

resentations) assuming a complete equivalence between thetwo models. In this thesis, we carefully

analyze the connection between these two models and study the conditions under which networked sys-

tems can be viewed as structured systems, and vice versa. Although, networked systems are shown to be

equivalent to structured systems in general, we show that modeling the networked systems as systems

with structured transfer function matrices is inappropriate for problems which require stabilizability and

detectability of the designed networked system. This is dueto the lack of constructive proofs in liter-

ature to obtain a stabilizable and detectable networked system corresponding to an unstable structured

transfer function matrix. This important observation shows that the theory developed for designing

distributed controllers using transfer function approaches (where the designed transfer functions can in

general be unstable) may not provide a stabilizing networked controller.

We refer to the property of realizing a structured transfer function matrix as a stabilizable and de-

tectable networked system bynetwork realizability. Although this problem is mostly open and appears

to be difficult, we partially answer this problem by providing a constructive proof to show that stable

structured transfer function matrices are always network realizable.

Based on this development, we consider the problem of designing stabilizing networked controllers

for a given networked plant. As transfer function approaches are not suitable, we develop a state-space

approach using classical Youla-Kučera parameterizationtechniques to parameterize all internally sta-

bilizing networked controllers for the given networked plant. This formulation allows us to pose the

problem of finding stabilizing networked controllers as an unconstrained convex optimization prob-

lem, which can be solved using standard techniques. This formulation allows us to solve the optimal
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networkedH2 andH∞ control problems while ensuring that the solution is a stabilizing networked

controller that can be implemented as sub-systems interacting over the given network.

It turns out that the optimal stabilizing networked controllers can have a large order as they trade off

complexity for the lack of complete communication graph. The optimal solutions provide performance

limitations of the controllers when constrained to be networked. In order to obtain networked controllers

with order comparable to that of the networked plant, we provide a methodology to obtain full-order

internally stabilizing networked controllers using linear matrix inequalities. This methodology being

based on a sufficiency condition, assures only sub-optimal full-order stabilizing networked controllers.

Next, we consider the problem of designing a networked estimator for a given networked plant. We

express this problem as a networked control problem for an equivalent plant model and apply our net-

worked controller design approach. We provide the parameterization of all stable networked estimators

and the networked estimation problem is expressed as an unconstrained convex optimization problem

that can be solved using standard techniques.

Finally, we consider the networked systems over any generaldelay networks. The results previ-

ously developed for systems over zero-delay networks are extended to the case of systems over general

delay networks. We conclude the thesis with a look at future research directions - the development of

model reduction techniques for networked systems, the development of distributed design methods, and

the extension of our design methodology to include network model uncertainties and other distributed

performance objectives.



www.manaraa.com

1

CHAPTER 1. Introduction

With increasing number of applications in the field of networked or spatially interconnected sys-

tems, there has been a great surge in research towards designof networked controllers for such systems.

One of the main objectives of this research is to find networked controllers that satisfying the desired

performance criteria and can also be implemented in a distributed fashion over the same network as that

of the plant.

In this thesis, we solve the optimal networkedH2 andH∞ control problems for a class of net-

worked systems composed of heterogeneous sub-systems interacting over a given network. In the net-

worked system model we consider, only local information is passed from a sub-system to it’s immediate

neighbors over the network in each time instant. The controller is also networked and uses the same

interconnection as the networked plant. We restrict our attention to linear time-invariant discrete-time

systems.

The literature on decentralized, distributed, and networked control is vast, and it is difficult to pro-

vide a thorough review. In the classical decentralized control problem, the plant is generally not inter-

connected and the controller is made of isolated sub-controllers that use only local measurements and

act only on local actuators. These problems are notoriouslyhard (for example the Witsenhausen prob-

lem in [1]) and have motivated the search for controller structures other than just diagonal ones [2–9].

In particular, the availability of communication networksallows controllers to exchange informa-

tion over the network, and result in structured systems consistent with the available communication

network. However, these problems are also usually difficultto solve when the underlying networks for

the plant and controller are generic. Important exceptionsare obtained for certain networked plant and

controller models. Looking for and identifying conveniently searchable structures, in the system state-

space or input-output representation, has been the focus ofmost research in networked or distributed

control problems. Examples when network constraints are imposed on the controller transfer function
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matrix include the cases of spatially invariant systems [4, 10–12], systems with triangular and band

structures [5, 6], symmetrically interconnected systems [13], dynamically coupled systems [9], poset-

causal systems [14] and in the case of plant and controller structures satisfying quadratic invariance

property [8, 15]. These results provide controllers with transfer functions satisfying linear constraints

imposed by the underlying network. Examples where network constraints are imposed on the controller

state-space matrices include relatively smaller number ofcases like networked systems over acyclic net-

works [16], identical dynamically coupled diagonalizable systems [17] and heterogeneous sub-systems

connected over arbitrary undirected graphs considered by [18]. Due to the finite-dimensionality of the

state-space approaches, the controllers obtained with network constraints imposed on the state-space

matrices are usually sub-optimal.

In the following example, we will show that a large part of thetheory developed for distributed

controller design does not truly provide a internally stabilizing distributed controller, i.e. a state-space

representation of a distributed controller that makes the state-space dynamics of the closed-loop system

asymptotically stable.

1.1 Motivational example

Consider the following dynamically coupled systemG, based on the model considered in [9], of the

form

x1(k+1) = A11x1(k)+A12x2(k)+ B̄1w1(k)+B1u1(k),

x2(k+1) = A21x1(k)+A22x2(k)+ B̄2w2(k)+B2u2(k),

x3(k+1) = A32x2(k)+A33x3(k)+ B̄3w3(k)+B3u3(k),

z1(k) = C̃11x1(k)+ D̃1w1(k),

z2(k) = C̃21x2(k)+ D̃2w2(k),

z3(k) = C̃32x3(k)+ D̃3w3(k),

y1(k) = C11x1(k)+C12x2(k)+ D̄1w1(k),

y2(k) = C21x1(k)+C22x2(k)+ D̄2w2(k),

y3(k) = C32x2(k)+C33x3(k)+ D̄3w3(k).

(1.1)
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wherexi(k), wi(k), zi(k), ui(k) andyi(k) denote parts of the state vector, exogenous input vector, regu-

lated output vector, control input vector and the measurement output vector for alli. Now, consider the

problem of finding finite-dimensional internally stabilizing controllersK of the form

xK
1 (k+1) = AK

11x
K
1 (k)+AK

12x
K
2 (k)+BK

1 y1(k),

xK
2 (k+1) = AK

21x
K
1 (k)+AK

22x
K
2 (k)+BK

2 y2(k),

xK
3 (k+1) = AK

32x
K
2 (k)+AK

33x
K
3 (k)+BK

3 y3(k),

u1(k) = CK
11x

K
1 (k)+CK

12x
K
2 (k)+DK

1 y1(k),

u2(k) = CK
21x

K
1 (k)+CK

22x
K
2 (k)+DK

2 y2(k),

u3(k) = CK
32x

K
2 (k)+CK

33x
K
3 (k)+DK

3 y3(k),

(1.2)

wherexK
i (k) denote parts of the state-vector for controllerK for all i. LetS denote the set of controllers

with dynamics given in (1.2). So, the problem can be posed as a search forK ∈ S that minimizes

an objective function and makes the feedback interconnection of G andK asymptotically stable. In

literature, such problems were solved by searching for transfer functions ofK which correspond to the

state-space equations in (1.2). In this case, the transfer functions corresponding to (1.2) will be of the

form

K(z) :













U1(z)

U2(z)

U3(z)













=













H11(z) z−1H12(z) 0

z−1H21(z) H22(z) 0

z−2H31(z) z−1H32(z) H33(z)

























Y1(z)

Y2(z)

Y3(z)













, (1.3)

whereHi j (z) is a real rational proper transfer function matrix for alli and j. Let the set of transfer

function matrices of the form (1.3) be represented bySt f . Note that the setSt f can easily be described

in terms of sparsity and delay constraints which are linear constraints. Let the transfer function forG in

(1.1) be written in the form

G(z) :







Z(z)

Y(z)






=







G11(z) G12(z)

G21(z) G22(z)













W(z)

U(z)






(1.4)

whereZ(z) := [Z′
1(z),Z

′
2(z),Z

′
3(z)]

′ and similarly forY(z), W(z) andU(z). So,G22(z) is the mapping

from U(z) toY(z) which can be obtained from (1.1).
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1.1.1 Quadratic invariance

Definition 1. A setT of transfer function matrices is said to bequadratically invariantunder G22(z) if

K(z)G22(z)K(z) ∈ T for every K(z) ∈ T .

In [8], the authors showed that the problem of searching forK(z) ∈ St f is convex ifSt f is quadrat-

ically invariant underG22(z). In our case, simple algebraic operations show thatSt f is in fact quadrat-

ically invariant underG22(z) in (1.4). Then, [8] shows that if there exists a stable stabilizing nominal

controller Knom ∈ St f , then Zames’ parameterization [19] can be used to parameterize the set of sta-

bilizing controllers inSt f using a parameterQ(z) ∈ St f which is stable. This parameterization allows

them to solve for an optimal stabilizing controller inSt f .

Since our objective is to find an internally stabilizing controller inS which is described by structural

constraints on the state-space matrices ofK, one needs to find a stabilizing state-space realization inS

for elements inSt f . We refer to this problem of realizing a structured transferfunction as a stabilizable

and detectable state-space model with a particular sparsity structure asstructured realization. This is

still an open problem for a general class of systems. Due to the lack of results on structured realization

in literature, the transfer function approaches that allowone to find optimal stabilizing controllers inSt f

cannot directly be extended to finding optimal stabilizing controllers inS.

This is the main focus in this thesis. We propose to develop a state-space approach to make the

search for stabilizing controllers inS a convex problem. Instead of re-deriving the results of [8] in

a state-space form, which is based on quadratic invariance of transfer function matrices, we found

that a state-space formulation of Youla-Kučera parameterization (which is based on linear fractional

transformations of state-space representations) is well-suited for our problem. We studynetworked

systemsand show that they can be expressed as elements of sets of the form S. Then, we study the

relationship betweenS andSt f . We show that a stable transfer function inSt f can have a stable state-

space realization inS. Using this result, we use a state-space Youla-Kučera parameterization in [20] to

parameterize the internally stabilizing controllers inS in terms of a stable parameterQ(z) ∈ St f . This

approach allows us to not only search for internally stabilizing controllers in a convex fashion but also

assures that the internally stabilizing controller is inS. Also, note that Youla parameterization is based

on an observer-based nominal stabilizing controller (which need not be a stable system) while Zames’
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parameterization used in [8] requires a stable stabilizing nominal controller (which can be more difficult

to obtain).

1.2 Organization of thesis

This thesis is organized in the following form. In Chapter2, we introduce the notation and provide

background information related to graph theory, linear algebra and systems theory that will be used

in the later parts of the thesis. In Chapter3, we introduce the networked systems that are considered

in the thesis. We describe the dynamics of networked systemsusing the sub-system dynamics and

the network they are interacting on. We first study systems over zero-delay networks and show that

such networked systems can be described using structured state-space or structured transfer function

matrix representations. We point out the problem of networkrealizability that has not been addressed

thoroughly in literature.

In Chapter4, we consider the problem of designing a networked controller for a networked plant

when both the plant and controller are constrained to be overthe same zero-delay network. Using

the relationship between networked systems and structuredsystems, we extend the classical Youla-

Kučera parameterization to describe the set of all internally stabilizing networked controllers for a

given networked plant using a stable networked parameterQ. Using this parameterization, we show

that theH2 andH∞ networked control problems are in fact convex optimizationproblems. In the case

of H2 networked control problem, the constrained convex optimization problem is transformed into

an unconstrained convex optimization problem that can be solved easily to get the optimal networked

controller.

Since the optimal networked controllers can possibly have alarge order, we provide methodolo-

gies to design full-order internally stabilizing networked controllers for the given networked plant, in

Chapter5. In Chapter6, we consider the networked estimation problem where each sub-system of

the networked estimatro estimates the states of the corresponding sub-system of the plant be exchang-

ing information with other sub-systems of the estimator. Wepose the networked estimation problem

as an equivalent networked control problem and solve it using previously developed techniques from

Chapter4.
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In Chapter7, we extend the results for systems over zer-delay networks (given in chapter3 and

Chapter4) to systems over any general delay networks. The delay shiftoperator allows us to represent

systems over delay networks appropriately and allows us to use the same framework that was developed

for systems over zero-delay networks. Some numerical examples are given in Chapter8 to explain the

main results provided in the thesis. Finally, we conclude the thesis and provide directions for future

work in Chapter9.
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CHAPTER 2. Preliminaries and Notation

In order to keep this thesis self-contained, we provide mostof the notation used in this thesis through

this chapter.

The set of natural numbers{1,2, . . .} is represented byN. Including 0, the set{0,1,2, . . .} is repre-

sented byN0. The sets of real numbers and complex numbers are denoted byR andC. The open unit

disc inC is denoted byD given by

D = {λ ∈ C : |λ |< 1},

and it’s closure and boundary are represented byD̄ and∂D, respectively, where

D̄ = {λ ∈ C : |λ | ≤ 1}, ∂D = {λ ∈ C : |λ | = 1}.

2.1 Graph Theory

Networked systems are best described using graph-theoretic notation. Adirected graphor digraph

is a pairG = (V,E) of sets whereV is thevertex-setwhose elements areverticesor nodes, andE ⊆ V2

is thedirected edge-setwhose elements are thedirected edgesor arcs. We also useV(G) andE(G) to

denote the vertex and edge sets ofG. |V(G)| and|E(G)| are used to denote the number of vertices and

directed edges present in the digraphG, respectively. Letnv = |V(G)| andne = |E(G)|. In order to refer

to the vertices and directed edges in a digraphG, we assume that the vertices inV andE are numbered

as{v1,v2, . . . ,vn} and{e1,e2, . . . ,en}, respectively. Given a digraph, through out this thesis, weassume

that the vertices and directed edges are numbered in some fixed order.

An ordered paire= (vi ,v j) represents a directed edge from vertexvi to vertexv j . The first vertex

vi in the ordered pair(vi ,v j) is called it’stail and the second vertexv j is it’s head. A weighted digraph

is one in which a real value is associated with each edge in theedge-set calledcostor weightof the
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edge.W(er) is used to denote the weight of an edgeer ∈ E . We also use a termunit-weight digraphto

describe a digraph withW(er) = 1 for all er ∈ E .

A walk from vertexvi to v j onG is an alternating sequence of vertices and directed edges, beginning

atvi and ending atv j , where each edge has the preceding vertex as it’s tail and succeeding vertex as it’s

head. To simplify the notation, a walk fromvi to v j is represented by only a sequence of verticesπ ji =

π ji (0)π ji (1) . . .π ji (r) whereπ ji (0) = vi , π ji (r) = v j and(π ji (k),π ji (k+ 1)) ∈ E ∀ k ∈ {0,1, . . . , r −1}.

A path is a walk where all the vertices are distinct.Lengthof a walk is defined as the number of edges

in the walk. Ashortest pathfrom vertexvi to vertexv j is defined as a path fromvi to v j with shortest

length. Let the shortest path length from vertexvi to vertexv j be denoted byl ji . In the case of weighted

digraphs,weightof a walk is defined as the sum of the weights of all the edges in the walk. Aminimum-

weight pathfrom vertexvi to vertexv j is defined as a path fromvi to v j with least weight. Let the weight

of minimum-weight path from vertexvi to vertexv j be denoted byWji .

Given a digraphG = (V,E), the unique binary matrices (assuming the vertices and edges are num-

bered in a fixed order)A(G) andAm(G) (for all m∈ N0) of sizenv×nv are defined as

[A(G)]i j :=















1 if i = j or (v j ,vi) ∈ E

0 otherwise

(2.1)

[Am(G)]i j :=































1 if i = j or there exists a directed path from vertexv j

to vertexvi of length at mostm

0 otherwise.

(2.2)

Since the longest path in a digraph withnv vertices isnv−1, we note thatAk(G) = Anv−1(G) for all

k≥ nv−1. From (2.2), it is also easy to see that the shortest path lengthl i j from vertexv j to vertexvi

is given by

l i j =















0 if i = j

inf{m∈ N0 : [Am(G)]i j 6= 0} otherwise.

(2.3)

Note thatl i j = ∞ if there is no path fromvi to v j , j 6= i.
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Define directed neighborhood index sets for each vertexvi given by

N−
i = { j|(v j ,vi) ∈ E}

N+
i = { j|(vi ,v j) ∈ E}.

(2.4)

Thus, the set of vertices that have directed edges to vertexvi in E is given by{vr}r∈N−

i
. Similarly, the

set of vertices that have directed edges from vertexvi in E is given by{vr}r∈N+
i

.

2.2 Linear algebra and Matrices

We refer to a column-vector asvector. To make representations compact, we use the notation

vert[xi ]i∈I andhor[xi ]i∈I for vertical and horizontal concatenation of vectors or matrices{xi}i∈I , of

appropriate dimension, whereI is an index set. Let[xi j ]i, j∈I represent a matrix formed by arranging

the sub-matrices{xi j }i, j as vert[hor[xi j ] j∈I ]
i∈I

. Also, let diag[xi ]i∈I denote the matrix formed by

arranging the vectors or matrices{xi}i∈I in a block diagonal fashion and the remaining entries being

zeros. Sometimes, if the index setI equals{1, . . . ,n}, then we will not explicitly mention the index set.

Rankof a matrixA is defined as the maximum number of linearly independent columns or rows

of A and is represented byrank(A). A matrix A is said to havefull rank if a has a rank as large as

possible. A square matrixA is said to beSchur-stableif all eigenvalues are inside the unit circle, in

other words,(zI−A) has full rank for anyz∈ C\D̄. A′ is used to denote the transpose of a matrixA.

Tr (A) denotes the trace of a square matrixA. A−1 denotes the inverse of a non-singular square matrixA.

A symmetric matrixQ is said to bepositive definite (semi-definite), iff v′Qv> 0(≥ 0) for any non-zero

vectorv. We writeQ≻ 0 (Q� 0) to denote thatQ is positive definite (semi-definite).Q≻ P (Q� P)

meansQ−P≻ 0 (Q−P� 0).

Lemma 1. For any square matrix A, if A+A′ ≻ 0, then A is non-singular.

Proof. We prove this using contradiction. GivenA+ A′ ≻ 0, assume thatA is singular. ThenA has an

eigenvalue at 0. Letv denote the right eigenvector ofA corresponding to eigenvalue 0, i.e.Av= 0. First

note thatA is a non-zero matrix sinceA+A′ ≻ 0. Thus,v is a non-zero eigenvector. For this non-zero

v, we can see thatv′(A+A′)v = v′Av+v′A′v = 0 which contradicts the hypothesis thatA+A′ ≻ 0.
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If A∈ R
m×n andB∈ R

p×q, theKronecker product A⊗B∈ R
mp×nq is defined as

A⊗B :=













A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB













. (2.5)

Given a matrixA = [a1 ... an ] ∈ C
m×n, where{ai}i denote the columns ofA, we associate a vector

vec(A) = vert[ai ]i ∈ C
mn (2.6)

which is a vector formed by vertically concatenating the columns of matrixA. Definevec−1(·) as the

inverse operation of thevec(·) such thatvec−1(vec(A)) = A. When required, we shall useI for an

identity matrix and 0 for a zero matrix of appropriate size.

In this paper, we will come across block matrices that are made up of smaller sub-matrices. These

matrices are best described in terms of their sparsity structures. We say a block matrixA= [Ai j ]i, j∈{1,...,n}

is structured according toan n× n binary matrixJ if the sub-matricesAi j is a zero matrix whenever

Ji j = 0. The dimensions of the sub-matrices{Ai j }i, j are described using two integer-valued vectors as

follows. LetPa = (a1, . . . ,an) andPb = (b1, . . . ,bn) be twon−tuples withai andbi being integers for

all i ∈ {1, . . . ,n}. Then, matrixA is said to bepartitioned according to(Pa,Pb) if the sub-matrixAi j

has dimensionsai ×b j ∀i, j. This definition of partitioning is easily extended to the case of vectors too.

A vectorx is said to bepartitioned according toPa if it can be written asvert[xi ]i∈{1,...,n} wherexi is a

real vector of sizeai for all i ∈ {1, . . . ,n}. We say thatPa is the partition for the vectorx.

Definition 2. Given an n× n binary matrix J and n−tuplesPa, Pb, let S(J,Pa,Pb) denote the set of

matrices that are partitioned according to(Pa,Pb) and structured according to J.

For example, according to the above definitions, the following matrix

A =





















1 2 1 0 0 0

3 1 2 0 0 0

2 2 1 0 0 0

0 1 3 2 1 2





















∈ S(J,Pa,Pb)

whereJ =
[

1 1 0
1 1 0
0 1 1

]

, Pa = (1,2,1) andPb = (1,2,3).
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The following lemmas are used in the later part of this paper to describe properties of state-space

and input-output representations of interconnected systems.

Remark 1. Given n−tuplesPa, Pb, Pc, let the matrices E and F be partitioned according to(Pa,Pb)

and (Pb,Pc), respectively. Based on block matrix multiplication rules, the product EF is partitioned

according to(Pa,Pc) and [EF]i j =
n

∑
k=1

EikFk j where Ei j and Fi j are the sub-matrices of E and F,

respectively.

Lemma 2. Let J be an n× n binary matrix andPa, Pb, Pc, Pd be n−tuples. Given matrices E∈

S(I ,Pa,Pb), F ∈ S(J,Pb,Pc) and G∈ S(I ,Pc,Pd), where I is an n× n identity matrix, the product

EFG∈ S(J,Pa,Pd).

Proof. From the hypothesis, we see thatE = [Ei j ]i, j , F = [Fi j ]i, j andG = [Gi j ]i, j whereEi j andGi j are

zero matrices wheni 6= j while Fi j = 0 whenJi j = 0. From the Remark1, it is easy to see thatEFG is

a block matrix which is partitioned according to(Pa,Pd). Thus, we can writeEFG= [Hi j ]i, j in terms

of some sub-matricesHi j which have dimensionsPa(i)×Pd( j) and

Hi j =
n

∑
k=1

n

∑
m=1

EikFkmGm j

=
n

∑
m=1

Eii FimGm j = Eii Fi j G j j

(2.7)

sinceEik = 0∀i 6= k andGm j = 0∀m 6= j. From (2.7), we see thatHi j = 0 wheneverJi j = 0 sinceFi j = 0

wheneverJi j = 0. Thus,EFG is structured according toJ and partitioned according to(Pa,Pd).

Lemma 3. Given an nv−tuple Pa and a digraphG = (V,E) with the binary matricesA(G) and

Am(G) (for all m ∈ N0) given by(2.1) and (2.2), let {Ai}i be a sequence of matrices such that Ai ∈

S(A(G),Pa,Pa) for all i. Then Bm =
m

∏
k=1

Ak ∈ S(Am(G),Pa,Pa) for all m.

Proof. From the definition ofAm(G) in (2.2), we can see thatA1(G) = A(G). Thus, from hypothesis,

we know thatB1 = A1 ∈ S(A1(G),Pa,Pa).

Now, assume thatBm =
m

∏
k=1

Ak ∈ S(Am(G),Pa,Pa) for somem= p. From Remark1, we can see

thatBp+1 = BPAp+1 is partitioned according to(Pa,Pa) and the sub-matrices[Bp+1]i j are given by

[Bp+1]i j =
n

∑
k=1

[Bp]ik[Ap+1]k j.
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If there is no path from vertexv j to vertexvi of length at mostp+ 1, then for allvk ∈ V, either

there is no path fromvk to vi of length at mostp or there is no directed edge fromv j to vk. Thus, either

[Bp]ik or [Ap+1]k j are zero-matrices for allk when[Ap+1(G)]i j = 0. Thus,[Bp+1]i j is a zero matrix when

[Ap+1(G)]i j = 0, which implies thatBp+1 ∈ S(Ap+1(G),Pa,Pa).

Thus, the given statement is true by mathematical induction.

2.3 System theory

A systemP is represented by a quadruple(A,B,C,D) or

P :







x(k+1)

y(k)






=







A B

C D













x(k)

u(k)






(2.8)

in terms of it’s state-space matricesA, B, C andD; and state, input and output vectorsx(k), u(k) and

y(k), respectively. A state-space representation(A,B,C,D) is asymptotically stableif A is Schur-stable.

(A,B,C,D) is said tostabilizable if [ zI−A B] has full rank for anyz∈ C\D̄. (A,B,C,D) is said to

detectableif
[

zI−A
C

]

has full rank for anyz∈ C\D̄.

Given a state-space representation(A,B,C,D), the unique transfer function matrix corresponding to

the systemP is given by thez−transform of it’s impulse response

P(z) := tf (P) := D+
∞

∑
k=0

CAkBz−k−1 (2.9)

which is also concisely represented by

P(z) :=







A B

C D






.

The Kronecker product in (2.5) can also be extended to transfer function matrices. The delay of a

real-rational transfer functionP(z) is given by

delay(P(z)) = inf{m∈ N0 : lim
z→∞

zmP(z) 6= 0}. (2.10)

Given two systemsG andK in terms of their state-space representations

G :













x(k+1)

z(k)

y(k)

























A B1 B2

C1 D11 D12

C2 D21 0

























x(k)

w(k)

u(k)













, K :







xK(k+1)

u(k)






=







AK BK

CK DK













xK(k)

y(k)






, (2.11)
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the lower linear fractional transformation(LFT) of G andK is given by the Redheffer star-product

lft (G,K) :













x(k+1)

xK(k+1)

z(k)













=













A+B2DKC2 B2CK B1 +B2DKD21

BKC2 AK BKD21

C1 +D12DKC2 D12CK D11+D12DKD21

























x(k)

xK(k)

w(k)













. (2.12)

In the case when the two systems are given in terms of their transfer function matricesG(z) andK(z)

whereG(z) is the mapping from
[

w(k)
u(k)

]

to
[

z(k)
y(k)

]

while K(z) is the mapping fromy(k) to u(k), we can

partition the transfer function matrixG(z) in terms ofG11(z), G12(z), G21(z) andG22(z) as

G(z) =







G11(z) G12(z)

G21(z) G22(z)






,

whereG22(z) is the mapping fromu(k) to y(k). Then the LFT ofG(z) andK(z) is given by

lft (G(z),K(z)) := G11(z)+G12(z)K(z)(I −G22(z)K(z))−1G21(z). (2.13)

whenG22(∞) = 0 (i.e. G22(z) is strictly proper).

A discrete-time system is said to bebounded-input bounded-output (BIBO) stableif the impulse

response of the system is absolutely summable. It is known that a systemG is BIBO stable if and only

if all the poles of it’s transfer function matrixG(z) are inside the unit circle.

A discrete-time systemG with a state-space representation(A,B,C,D) is said to beinternally stable

or asymptotically stableif A is Schur-stable. It is known that ifG= (A,B,C,D) is asymptotically stable,

thentf (G) is BIBO stable but not viceversa.

We say that a systemK stabilizesa systemG (in (2.11)) if lft (G,K) is BIBO stable andinternally

stabilizes Gif lft (G,K) is asymptotically stable.

Given a discrete-time systemG, theH2 norm of the system is given by

‖G(z)‖2 =

√

1
2π

∫ π

−π
Tr (G(ejθ )G∗(ejθ )dθ) (2.14)

whereG(z) is the transfer function matrix ofG. If a state-space realization ofG is given by(A,B,C,D),

then theH2 norm is given by

‖G‖2 =
√

Tr (DD′ +CMcC′), (2.15)

whereMc � 0 is the controllability grammian that solves the discrete-time Lyapunov (Stein) equation

AMcA
′−Mc+BB′ = 0. (2.16)
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The solution of the Stein equation is given by

Mc =
∞

∑
k=0

AkBB′(A′)k. (2.17)

Given a discrete-time systemG with a transfer function matrixG(z), theH∞ norm of the system is

given by

‖G(z)‖∞ = sup
θ∈[0,π]

σ̄(G(ejθ )) (2.18)

whereσ̄(·) is the maximum singular value function.

Let Rp denote the set of real-rational proper transfer function matrices,Rsp denote the set of real-

rational strictly-proper transfer function matrices andRH∞ denote the set of real-rational proper stable

transfer function matrices.
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CHAPTER 3. Networked systems

In this chapter, we introduce the systems that are considered in this thesis.

Definition 3. A group of plants or sub-systems interacting over a network is termed as anetworkedor

interconnectedsystem.

From Definition3, it can be seen that a networked system is characterized by the dynamics of the

sub-systems and the properties of the network on which they are interacting. In this thesis, we consider

only discrete-time sub-systems interacting over discrete-time networks. We model such systems using

system theory and graph theory by making further assumptions on the properties of the sub-systems

and the interaction network.

3.1 Discrete-time networked system

Definition 4. A networked system made of n discrete-time finite-dimensional linear time-invariant (DT

FDLTI) sub-systems interacting over a discrete-time network is referred to as adiscrete-time networked

system.

The dynamics of a discrete-time networked system depends onthe dynamics of the sub-systems

and the network interconnection.

Assumption 1. The clock for all the n sub-systems and the network links is assumed to be the same.

Let {Pi}i∈{1,...,n} denote then sub-systems. Letxi(k) be the local state vector,ui(k) the local input

vector, yi(k) the local output vector corresponding to the sub-systemPi. Let ηri (k) be the message

vector transmitted from sub-systemPi to Pr at the time instantk andζi j (k) be the message received by

Pi from Pj at time instantk. Let ti j denote the smallest discrete time-delay over the network link from
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sub-systemPj to Pi. Then the considered state-space representation (assumedto be minimal) forPi is of

the form

xi(k+1) = Aii xi(k)+Bu
i ui(k)+ ∑

j∈IN(i)

Bζ
i j ζi j (k)

yi(k) = Cy
ii xi(k)+Dyu

i ui(k)+ ∑
j∈IN(i)

Dyζ
i j ζi j (k)

ηri (k) = Cη
ri xi(k) ∀ r ∈ OUT(i)

(3.1)

and the network dynamics is of the form

ζi j (k) = ηi j (k− ti j ) ∀ j ∈ IN(i), (3.2)

where IN(i), OUT(i) denote the index sets for sub-systems that transmit information to Pi and receive

from Pi, respectively, i.e. j ∈ IN(i) means that there is a network link fromPj to Pi and j ∈ OUT(i)

means there is a network link fromPi to Pj . Combining (3.1) and (3.2), the collective dynamics of the

networked systemP made of{Pi}i is given by

xi(k+1) = Aii xi(k)+Bu
i ui(k)+ ∑

j∈IN(i)

Ai j x j(k− ti j )

yi(k) = Cy
ii xi(k)+Dyu

i ui(k)+ ∑
j∈IN(i)

Cy
i j x j(k− ti j ),

∀ i ∈ {1, . . . ,n} (3.3)

whereAi j := Bζ
i jC

η
i j andCy

i j := Dyζ
i j Cη

i j for all i, j.

3.1.1 Graphical representation of discrete-time networked systems

The dynamical structure of a discrete-time networked system (3.3) made ofn sub-systems (with

dynamics given by (3.1)) interacting over a discrete-time network (3.2) can be better represented using

a weighted digraph. The graph-theoretic notation makes theequations more concise and makes it easier

to understand the structure of the model.

First, we shall see how to identify the weighted digraphG = (V,E) corresponding to the discrete-

time networked system. The vertex-setV is defined to represent then sub-systems such that vertex

vi corresponds to the sub-systemPi for all i ∈ {1, . . . ,n}. Thus, the number of verticesnv = n. The

directed edge-setE is defined based on the interactions between the sub-systems. A directed edge

er = (v j ,vi) ∈ E if there is a directed network link from sub-systemPj to Pi. Based on the smallest delay
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ti j corresponding to the link fromPj to Pi, we assign a weight

W((v j ,vi)) = ti j +1 ∀ (v j ,vi) ∈ E . (3.4)

z−1

P2

P1
P3

u2(k)

y2(k)

u1(k)

y1(k)

u3(k)

y3(k)

η32(k)

η12(k)

η21(k) ζ12(k)

ζ21(k)

ζ32(k)

(a) A Networked system

1

2

1

v1

v2

v3

(b) Weighted digraph represent-
ing the underlying network

Figure 3.1 A simple example of a discrete-time networked system model made of 3 sub-systems inter-
acting over a discrete-time network.

Note that this representation can replace multiple communication links from sub-systemPj to Pi

using just one weighted edge inE . The weight assignment in (3.4) can be better appreciated once

we study how an inputu j(k) at sub-systemPj affects the outputyi(k) at Pi in (3.3). By defining the

vertices, directed edges and the edge weights, we have a graphical representation of the discrete-time

network and the digraphG is said torepresentthe network interconnection. In terms of the graphical

representationG, a discrete-time networked system is given by the state-space equations of sub-systems

xi(k+1) = Aii xi(k)+Bu
i ui(k)+ ∑

j∈N−

i

Bζ
i j ζi j (k)

yi(k) = Cy
ii xi(k)+Dyu

i ui(k)+ ∑
j∈N−

i

Dyζ
i j ζi j (k)

ηri (k) = Cη
ri xi(k) ∀ r ∈N+

i

(3.5)

and the network interconnection equations given by

ζi j (k) = ηi j (k−W((v j ,vi))+1) ∀ (v j ,vi) ∈ E , (3.6)

whereN−
i andN+

i are given by (2.4).
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Definition 5. A discrete-time networked system P with sub-system dynamics, given by(3.5), satisfying

the network interconnection equations given by(3.6) is referred to as astrictly causal interaction of

discrete-time FDLTI sub-systems over a discrete-time network represented by a digraphG. In short, we

say “strictly causal interaction over a digraphG”.

3.1.2 Networked systems over zero-delay network

First, we study the case of zero-delay network whereti j = 0 for all network links. An extension

to a more general delay network will be addressed in Chapter7. Under the zero-delay condition, the

represented digraphG corresponding to the network is a unit-weight digraph, i.e.W(e) = 1 for all e∈ E .

This case is studied separately because of the emergence of simple sparsity structures (we shall show this

in the next section) in both state-space matrices and transfer function matrices of the networked systems.

In a general case, the sparsity structures of the state-space matrices are difficult to describe while the

transfer function matrices still show some sparsity and delay structures. But the ideas developed for the

zero-delay case can be extended to a general case with appropriate modifications. Under the zero-delay

network condition, (3.6) becomes

ζi j (k) = ηi j (k) ∀ (v j ,vi) ∈ E . (3.7)

 

P2

P1
P3

u2(k)

y2(k)

u1(k)

y1(k)

u3(k)

y3(k)

η32(k)

η12(k)

η21(k) ζ12(k)

ζ21(k)

ζ32(k)

(a) Networked system

1
1

1

v1

v2

v3

(b) Unit-weight digraph rep-
resenting the underlying zero-
delay network

Figure 3.2 A simple example of a discrete-time networked system model made of 3 sub-systems inter-
acting over a zero-delay network represented by a unit-weight digraph.
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Remark 2. Note that zero-delay network refers to the delay on the network link. It does not refer to the

delay of the transfer function from input uj(k) at sub-system Pj to output yi(k) at sub-system Pi. We will

later see through Remark4 that the delay from uj(k) to yi(k) is equal to li j given by(2.3).

By combining the equations (3.5) and (3.7), we can eliminate the network variablesζi j (k) and

ηri (k), and write the state-space equations for the sub-systems as

xi(k+1) = Aii xi(k)+Bu
i ui(k)+ ∑

j∈N−

i

Ai j x j(k)

yi(k) = Cy
ii xi(k)+Dyu

i ui(k)+ ∑
j∈N−

i

Cy
i j x j(k),

∀ i ∈ {1, . . . ,n} (3.8)

whereAi j := Bζ
i jC

η
i j andCy

i j := Dyζ
i j Cη

i j . Let P denote the discrete-time networked system defined by

(3.5) and (3.7). Then the state-space equations ofP in (3.8) can also be concisely presented as

P :







x(k+1)

y(k)






=







A Bu

Cy Dyu













x(k)

u(k)






(3.9)

whereA := [Ai j ]i, j , Bu := diag[Bu
i ]i , Cy := [Cy

i j ]i, j andDyu := diag[Dyu
i ]i (such thatAi j andCy

i j are zero

matrices when(v j ,vi) /∈ E and i 6= j) denote the structured state-space matrices;x(k) := vert[xi(k)]i ,

u(k) := vert[ui(k)]i andy(k) := vert[yi(k)]i denote the complete state, input and output vectors corre-

sponding to the networked systemP and be partitioned according toPx, Pu andPy, respectively. From

(3.8), and the structure ofx(k), u(k) andy(k), we can see that (using definition2)

A∈ S(A(G),Px,Px), Bu ∈ S(I ,Px,Pu),

Cy ∈ S(A(G),Py,Px), Dyu ∈ S(I ,Py,Pu).

(3.10)

whereA(G) is given by (2.1) andI is ann×n identity matrix.

Remark 3. Note that the discrete-time networked systems considered in this thesis (through(3.8)) are

different from the networked systems considered in [16] where the sub-systems were assumed to be

instantaneous relays, i.e. any information at a sub-systemPi is assumed to be passed on to any other

sub-system Pj that has a directed path to Pi (of any lenght) in next time instant. Our model is based

on the networked system considered in [9] where each sub-system can send the local information only

to immediate directed neighbors in the next time instant. Thus, our model assures that the network

topology exactly describes the information flow from one node to another node with time, unlike the

model in [16].
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3.2 Structured systems

In this Section, we look at systems whose state-space and transfer function matrices follow sparsity

and delay structures. We will later study how structured andnetworked systems are related. Based on

this relationship, we use structured systems to represent,design and search for networked systems

Definition 6. Given a digraphG = (V,E) with n vertices and n−tuplesPx, Pu andPy; let A(G) be

the unique binary matrix given by(2.1). We defineS(G,Px,Py,Pu) as the set of discrete-time systems

with a state-space representation(A,Bu,Cy,Dyu) such that A∈ S(A(G),Px,Px), Bu ∈ S(I ,Px,Pu), Cy ∈

S(A(G),Py,Px) and Dyu ∈ S(I ,Py,Pu).

Also defineS(G,Py,Pu) = ∪Px∈NnS(G,Px,Py,Pu).

Note that the state-space representations inS(G,Px,Py,Pu) have only structural constraints on the

state-space matrices and the state-space representation itself can be non-minimal.

Definition 7. Given a digraphG = (V,E) with n vertices and the n−tuplesPu andPy; let An−1(G)

be the unique binary matrix given by(2.2) and li j be defined for all i, j according to(2.3). We define

T(G,Py,Pu) as the set of transfer function matrices P(z) ∈ S(An−1(G),Py,Pu) such that the transfer

function sub-matrices Pi j (z) ∈R
Py(i)×Pu( j)
p (where P(z) = [Pi j (z)]i, j ) are such that

delay(Pi j (z)) ≥ l i j if l i j <∞

Pi j (z) = 0 if l i j = ∞

(3.11)

for all i, j.

It is easy to see, from Definitions6 and7, thatS(G,Py,Pu) andT(G,Py,Pu) are subspaces. We

refer to systems inS(G,Py,Pu) andT(G,Py,Pu), for somePu andPy, asstructured systems overG.

The sets of asymptotically stable and BIBO stable structured systems overG with input and output

partitions asPu andPy are denoted bySs(G,Py,Pu) andTs(G,Py,Pu), respectively.

Lemma 4. Given a digraphG = (V,E) and n−tuplesPx,Pu andPy. Let P be a structured system with a

state-space representation(A,Bu,Cy,Dyu) ∈ S(G,Px,Py,Pu) with state vector x(k), output vector y(k)

and input vector u(k) partitioned according toPx, Py andPu, respectively. Then the transfer function

matrix of the structured systemtf(P) ∈ T(G,Py,Pu).
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Proof. Let P(z) be the transfer function ofP. From (2.9), we get

P(z) = Dyu+
∞

∑
k=0

CyA
kBuz−k−1. (3.12)

DefineR0 := Dyu andRk+1 := CyAkBu for all k ∈ N0. From Lemmas2 and3, and the partitions of

state-space matrices from (3.10), we see that

Ak ∈ S(Ak(G),Px,Px) ⇒ CyA
k ∈ S(Ak+1(G),Py,Px)

⇒ CyA
kBu ∈ S(Ak+1(G),Py,Pu)

⇒ Rk ∈ S(Ak(G),Py,Pu) ∀ k∈ N0.

(3.13)

Note thatA0(G) = I . From (3.12) and definitions of{Rk}k, we can write

P(z) =
∞

∑
k=0

Rkz
−k. (3.14)

Following the facts that

• Ak(G) = An−1(G) for all k≥ n−1,

• S(An−1(G),Py,Pu) is a subspace,

• S(Ak(G),Py,Pu) ⊆ S(An−1(G),Py,Pu) for all k,

it is easy to see thatP(z) ∈ S(An−1(G),Py,Pu) from (3.14).

SinceP(z) is partitioned according to(Py,Pu) we can writeP(z) = [Pi j (z)]i, j , wherePi j (z) is the

transfer function sub-matrix mapping input vectoru j(k) to output vectoryi(k). From (3.14), we get

Pi j (z) =
∞

∑
k=0

[Rk]i j z
−k. (3.15)

where[Rk]i j is the sub-matrix ofRk, for all k. From (3.15), (2.2) and (2.3); the delay ofPi j (z) is given

by

delay(Pi j (z)) = inf{m∈ N0 : lim
z→∞

zmPi j (z) 6= 0}

= inf{m∈ N0 : lim
z→∞

zm
∞

∑
k=0

[Rk]i j z
−k 6= 0}

≥ inf{m∈ N0 : lim
z→∞

zm
∞

∑
k=0

[Ak(G)]i j z
−k 6= 0}

= inf{m∈ N0 : lim
z→∞

zm
∞

∑
k=li j

z−k 6= 0} = l i j ,

(3.16)

which implies thatP(z) ∈ T(G,Py,Pu).
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Theorem 1. Given a digraphG = (V,E) and n−tuplesPu andPy.

1. Let P(z) be a transfer function matrix inT(G,Py,Pu) with input vector u(k) and output vector

y(k) partitioned according toPu andPy, respectively. Then there exists a state-space realization

(A,Bu,Cy,Dyu) of P(z) in S(G,Px,Py,Pu) with state vector x(k) partitioned according to some

n−tuplePx.

2. If P(z) is also BIBO stable, i.e. P(z) ∈ Ts(G,Py,Pu), then there exists a state-space realization

(A,Bu,Cy,Dyu) of P(z) in Ss(G,Px,Py,Pu) for some n−tuplePx, i.e. A is Schur-stable.

Proof. A digraphG = (V,E) and transfer function matrixP(z) ∈ T(G,Py,Pu) are given. So,P(z) is

partitioned according to(Py,Pu) and is of the formP(z) = [Pi j (z)]i, j . Note thatPi j (z) is essentially the

transfer function matrix mappingu j(k) to yi(k), where inputu(k) = vert[ur(k)]r andy(k) = vert[yr(k)]r

are partitioned according toPu andPy, respectively.

From (3.11), we see thatPi j (z) = 0 if there is no directed path fromv j to vi over the digraphG

anddelay(Pi j (z)) ≥ l i j , otherwise. The condition thatPi j (z) ∈ R
Py(i)×Pu( j)
p anddelay(Pi j (z)) ≥ l i j can

equivalently be written asPi j (z) = z−li j Hi j (z) (with possible pole-zero cancellations at origin) where

Hi j (z) ∈R
Py(i)×Pu( j)
p . Thus (3.11) can be written as

Pi j (z) =















z−li j Hi j (z) if l i j <∞

0 otherwise

(3.17)

whereHi j (z) ∈ R
Py(i)×Pu( j)
p for all i, j. Consider minimal realizations ofPi j (z) in the following cases

and define local states corresponding to a vertex as shown below.

• Wheni = j, define local statesxii (k) at vertexvi such that

Pii (z) :
xii (k+1) = Aii xii (k)+Bii ui(k)

yii (k) = Cii xii (k)+Dii ui(k)
(3.18)

• When j ∈ N−
i , define statesxi j (k) at vertexv j

Pi j (z) :
xi j (k+1) = Ai j xi j (k)+Bi j u j(k)

yi j (k) = Ci j xi j (k)
(3.19)
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• Whenl i j ≥ 2, let a shortest path from vertexv j to vertexvi be given byπi j = πi j (0)πi j (1) . . .πi j (l i j ),

whereπi j (0) = v j andπi j (l i j ) = vi . We refer toπi j (p) for p∈ {1, . . . , l i j −1} as intermediate ver-

tices. In this case, we define states at each vertex on the pathas follows.

z−1Hi j (z) :
x(0)

i j (k+1) = Ai j x
(0)
i j (k)+Bi j u j(k)

y(0)
i j (k) = Ci j x

(0)
i j (k)

(3.20)

Note that statesx(0)
i j (k) are defined at vertexv j and the outputsy(0)

i j (k) are passed to vertexπi j (1),

i.e. the first vertex in the selected path fromv j to vi . At verticesπi j (p), p∈ {1, . . . , l i j −1}, we

define statesx(p)
i j (k) corresponding to unit delay systems

z−1 :
x(p)

i j (k+1) = y(p−1)
i j (k)

y(p)
i j (k) = x(p)

i j (k).
(3.21)

We denote the state vector corresponding to each vertexvi to bex̃i(k), which is formed by appending

the statesxii (k), xri (k) ∀r ∈ N+
i andx(p)

ab (k) wheneverπab(p) = vi (for p∈ {0, . . . , lab−1}), i.e. when

vertexvi is a vertex on the shortest path from some vertexvb to some other vertexva. A network output

vector η̃ri (k), for all r ∈ N+
i , is formed by appendingyri (k) and y(p)

ab (k) wheneverπab(p) = vi and

πab(p+ 1) = vr (for p∈ {0, . . . , lab−1}). Similarly, a network input vector̃ζi j (k), for all j ∈ N−
i , is

formed by appendingyi j (k) andy(p)
ab (k) wheneverπab(p) = v j andπab(p+1) = vi (for p∈ {0, . . . , lab−

1}). Note that the network inputs defined at vertexvi do not affect the network outputs at the same

vertexvi for any time instantk.

At vertexvi , the outputyi(k) is given by

yi(k) = yii (k)+ ∑
j∈N−

i

yi j (k)+ ∑
j : li j≥2

y
(li j−1)
i j (k) (3.22)

Thus, we can definen sub-systems,{P̃i}i , each with local states ˜xi(k), local inputsui(k), local out-

putsyi(k), network inputsζ̃i j (k) (for all j ∈N−
i ) and network outputs̃ηir (k) (for all r ∈N+

i ). Following

the state-space equations (3.18), (3.19), (3.20), (3.21), (3.22) concerning these states, inputs and outputs

at each node, we can see that ˜xi(k+1) andyi(k) are linear functions of ˜xi(k), ui(k) and{ζ̃i j (k)} j∈N−

i
;

while η̃ri (k) is only a function of ˜xi(k) (for all r ∈N+
i ). Thus, then sub-systems{P̃i}i satisfy the struc-

ture given in (3.5) while the network inputs and network outputs satisfy (3.7). Thus the transfer function
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matrix P(z) is expressed as a networked systemP̃ which is a strictly causal interaction of sub-systems

{P̃i}i over a zero-delay network represented by the given unit-weight digraphG. Following (3.5), (3.7),

(3.8) and (3.9), we can get a state-space realization forP̃ as(A,Bu,Cy,Dyu) ∈S(G,Px,Py,Pu) for some

n−tuplePx. Following the construction of̃P, we can see that̃P can be a non-minimal realization of

P(z) wheretf (P̃) = P(z).

In the second case whenP(z) is also a BIBO stable transfer function, we show that the construction

procedure used in the previous part of the proof also assuresasymptotic stability ofP̃.

In order to check asymptotic stability ofP̃, we consider the zero-input system by assumingui(k) =

0 ∀i,k. First, we shall separate the states defined in (3.18), (3.19), (3.20) and (3.21)into two categories.

The first category consists of the states corresponding to the transfer function matricesPi j (z), ∀i ∈

{1, . . . ,n}, j ∈ N−
i ∪ {i} that were defined in (3.18) and (3.19). This set of states can be written as

X1(k) = vert[xi j (k)]i∈{1,...,n}, j∈N−

i ∪{i}. From the state-space equations corresponding to these states,

we get

X1(k+1) = diag[Ai j ]i∈{1,...,n}, j∈N−

i ∪{i}X1(k) (3.23)

whenui(k) = 0 for all i,k.

The second category consists of the states corresponding toall thePi j (z) whenl i j ≥ 2. For example,

assume that a shortest pathπi j from vertexv j to vertexvi has length greater than 1. Then

πi j = πi j (0) πi j (1) . . . πi j (l i j )

where l i j ≥ 2, πi j (0) = v j and πi j (l i j ) = vi . Corresponding to this path, the states earlier defined in

(3.20) and (3.21) arex(0)
i j (k), x(1)

i j (k), . . . , x
(li j−1)
i j (k). Let us define

Xi j (k) = vert[x(p)
i j (k)]p∈{0,...,li j −1}

corresponding to the pathπi j . From the state-space equations corresponding to these states, we can see

that

Xi j (k+1) =



























Ai j

Ci j 0

I 0

I 0

...



























Xi j (k). (3.24)
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DefineX2(k) = vert[Xi j (k)]{i, j:2≤li j<n} as the set of states corresponding toPi j (z) when l i j ≥ 2. Note

that X1(k) andX2(k) constitute all the states defined corresponding to then sub-systems{P̃i}i . From

(3.23) and (3.24), we can see that theA−matrix corresponding to the dynamics of
[

X1(k)
X2(k)

]

is block lower

triangular with{Ai j}i, j on the diagonal and the rest of the diagonal terms being zero.

By hypothesis,P(z) is BIBO stable which implies that{Pi j (z)}i, j are all BIBO stable, which in turn

implies that{Hi j (z)}i, j are all BIBO stable. Note that, we assumed minimal realizations ofPi j (z) and

Hi j (z) in (3.18), (3.19) and (3.20) which implies that the matrices{Ai j}i, j are all Schur-stable. Thus,

we can see that theA−matrix of the networked realizatioñP is also Schur-stable. This implies that the

there exists a state-space realizationP̃ = (A,Bu,Cy,Dyu) ∈ Ss(G,Py,Pu) such thattf (P̃) = P(z) when

P(z) is BIBO stable.

From Lemma4 and Theorem1, we can see that the set of structured systems over a given unit-

weight digraphG can be represented by eitherS(G,Py,Pu) or T(G,Py,Pu), since both the subspaces

describe the same set of systems.

3.2.1 Structured realizability

In the case of designing systems for practical use, we need stabilizablity and detectability of the de-

signed systems. For example, stabilizing controller design problems require the designed controllers to

be stabilizable and detectable. We refer to the property of realizing a structured transfer function matrix

in T(G,Py,Pu) as a stabilizable and detectable structured state-space representation inS(G,Py,Pu) by

structured realizability.

Theorem1 shows that given a digraphG and any structured transfer functionP(z) ∈ T(G,Py,Pu)

there exists a structured system̃P∈ S(G,Py,Pu) with the same transfer function. In the case ofP(z)

being BIBO stable,̃P was shown to be asymptotically stable (which is stabilizable and detectable). But

given a generic unstable structured system inT(G,Py,Pu), the proof of Theorem1 cannot be used to ob-

tain a stabilizable and detectable structured systemP̃∈S(G,Py,Pu) because the construction procedure

used in Theorem1 suggests a non-minimal realization and in general, does notpromise stabilizability

and detectability ofP̃. Even in literature, there is neither a minimal realizationtechnique nor a real-

ization technique that assures stabilizability and detectability for generic structured transfer function
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matrices while guaranteeing a specific sparsity pattern forthe state-space matrices. Thus, structured

realizability is still an open problem which needs to be addressed before using transfer function ap-

proaches to solve problems which impose sparsity constraints on the state-space representations of the

designed systems. This is an important observation and a contribution of this thesis.

3.2.2 Structured systems as Systems over networks

Remark 4. Following equations(3.5), (3.7), (3.8), (3.9), (3.10) and Definition6, it is easy to note

that a discrete-time networked system P that is a strictly causal interaction over a unit-weight digraph

G, with state, input and output partitions given byPx, Pu and Py, has a state-space representation

in S(G,Px,Py,Pu). And Lemma4 shows that the transfer function matrix corresponding to such a

networked system belongs to a subspaceT(G,Py,Pu).

From Remark4, we can see that any networked systemP with input and output partitionsPu andPy,

respectively; that is a strictly causal interaction over the given unit-weight digraphG has a state-space

representation inS(G,Py,Pu) and it’s transfer function matrix is inT(G,Py,Pu). SinceS(G,Py,Pu)

andT(G,Py,Pu) are subspaces of systems with linear constraints on their state-space representations or

transfer function matrices, search for structured systemsis relatively easier than searching for systems

over networks, and in some cases is also a convex problem. In order to utilize the advantages of

structured systems and still design systems over networks,we use the following two results:

• Given a structured system inS(G,Py,Pu), we show that there exists a networked system which is

a strictly causal interaction overG with same state-space matrices as that of the given structured

system. This result will be shown in Lemma5.

• Given a stable transfer function matrix inT(G,Py,Pu), we show that there exists a stable net-

worked system which is a strictly causal interaction overG with the same transfer function as the

given system. This result will be shown in Corollary1.

In this section, we address the reverse problem of expressing the elements ofS(G,Py,Pu) or

T(G,Py,Pu) as strictly causal interactions of sub-systems over the given unit-weight digraphG.
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Lemma 5. Given a unit-weight digraphG = (V,E) and n−tuplesPu andPy, and a structured system

P = (A,Bu,Cy,Dyu) ∈ S(G,Px,Py,Pu), there exists a networked system̃P which is a strictly causal

interaction overG with the same state-space representation(A,Bu,Cy,Dyu).

Proof. Let then−tuplePx denote the state partition corresponding toP. Then the state-space matrices

A, Bu, Cy andDyu are structured and partitioned as given by (3.10). Thus, we can partitionA = [Ai j ]i, j

and[Cy
i j ]i, j such thatAi j andCy

i j are zero matrices when[A(G)]i j = 0.

Definen sub-systems{P̃i}i given by

P̃i :

xi(k+1) = Aii xi(k)+Bu
i ui(k)+ ∑

j∈N−

i

Ai j ζi j (k)

yi(k) = Cy
ii xi(k)+Dyu

i ui(k)+ ∑
j∈N−

i

Cy
i j ζi j (k)

ηri (k) = xi(k) ∀ r ∈ N+
i

(3.25)

for all i, interacting over a network interconnection given by

ζi j (k) = ηi j (k) ∀ (v j ,vi) ∈ E (3.26)

wherex(k) := vert[xi(k)]i , u(k) := vert[ui(k)]i andy(k) := vert[yi(k)]i are partitioned according toPx,

Pu andPy, respectively.

By combining (3.25), (3.26) and eliminatingζi j (k) andηi j (k) for all (v j ,vi) ∈ E , we get the state-

space equations for sub-systemPi as

xi(k+1) = Aii xi(k)+ ∑
j∈N−

i

Ai j x j(k)+Bu
i ui(k)

yi(k) = Cy
ii xi(k)+ ∑

j∈N−

i

Cy
i j x j(k)+Dyu

i ui(k)
∀i ∈ {1, . . . ,n}. (3.27)

which implies that that the networked system̃P obtained by the interaction of sub-systems{P̃i}i over

the network described by (3.26) has the same state-space representation(A,Bu,Cy,Dyu) as the given

structured systemP.

Lemma5 shows that given a unit-weight digraphG and a structured systemP in S(G,Py,Pu), there

is a simple way to construct a networked system which is a strictly causal interaction overG, with the

same state-space representation. This is mainly possible because there are no bandwidth restrictions
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on the communication links (i.e. no restriction on the size of messages sent on the links) and also, the

communication links do not introduce any noise. Thus, combining equations (3.8), (3.9), (3.10) and

Lemma5, we can treatS(G,Py,Pu) and the set of strictly causal interactions overG (with input and

output partitionsPu andPy) as equivalent sets.

Corollary 1. Given a unit-weight digraphG = (V,E) and n−tuplesPu andPy, and a stable struc-

tured system P(z) ∈ Ts(G,Py,Pu), there exists a stable networked systemP̃ which is a strictly causal

interaction overG such thattf (P̃) = P(z).

Proof. The proof follows from Theorem1.

Similar to structured realizability, we refer to the property to realizing a structured transfer function

matrix in T(G,Py,Pu) as a stabilizable and detectable networked system which is astrictly causal

interaction overG with the same transfer function asnetwork realizability.

Remark 5. From the proof of Theorem1 and discussion in Section3.2.1, we notice that the network

realizability problem is also an open problem which needs tobe addressed if we want to use transfer

function approaches to solve problems that require the designed system to be a networked system that

is a strictly causal interaction overG.
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CHAPTER 4. Internal stabilization of networked plants using networked controllers

In this chapter, we consider a family of plants that are networked systems over a given network, and

consider the problem of feedback stabilization using a controller which is also a networked system over

the same network.

4.1 Networked plant model

A networked plantP is modeled as a strictly causal interaction of sub-systems (as in (3.5)) over

a given unit-weight digraphG, but with each sub-system now including local exogenous input vector

wi(k) and local regulated output vectorzi(k). The state-space description of the sub-systems{Pi}i are

given by

Pi :

xi(k+1) = Aii xi(k)+Bw
i wi(k)+Bu

i ui(k)+ ∑
j∈N−

i

Bζ
i j ζi j (k)

zi(k) = Cz
ii xi(k)+Dzw

i wi(k)+Dzu
i ui(k)+ ∑

j∈N−

i

Dzζ
i j ζi j (k)

yi(k) = Cy
ii xi(k)+Dyw

i wi(k)+ ∑
j∈N−

i

Dyζ
i j ζi j (k)

ηri (k) = Cη
ri xi(k) ∀ r ∈ N+

i

∀ i ∈ {1, . . . ,n} (4.1)

wherexi(k) denotes the local state vector,wi(k) local exogenous input vector,zi(k) local regulated

output vector,ui(k) local control input vector,yi(k) the local measurement output vector,ηri (for all

r ∈ N+
i ) the local network outputs andζi j (for all j ∈ N−

i ) the local network inputs corresponding to a

sub-systemPi. The discrete-time network corresponding to the unit-weight digraphG is given by

ζi j (k) = ηi j (k) ∀ (v j ,vi) ∈ E . (4.2)

Combining (4.1) and (4.2), the network inputs and outputs can be eliminated to give the state-space
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equations for the sub-systems as

xi(k+1) = Aii xi(k)+Bw
i wi(k)+Bu

i ui(k)+ ∑
j∈N−

i

Ai j x j(k),

zi(k) = Cz
ii xi(k)+Dzw

i wi(k)+Dzu
i ui(k)+ ∑

j∈N−

i

Cz
i j x j(k)

yi(k) = Cy
ii xi(k)+Dyw

i wi(k)+ ∑
j∈N−

i

Cy
i j x j(k),

∀ i ∈ {1, . . . ,n} (4.3)

whereAi j := Bζ
i jC

η
i j , Cz

i j := Dzζ
i j Cη

i j andCy
i j := Dyζ

i j Cη
i j . The state-space equations in (4.3) can also be

concisely written as

P :













x(k+1)

z(k)

y(k)













=













A Bw Bu

Cz Dzw Dzu

Cy Dyw 0

























x(k)

w(k)

u(k)













(4.4)

whereA := [Ai j ]i, j , Bw := diag[Bw
i ]i , Bu := diag[Bu

i ]i , Cz := [Cz
i j ]i, j , Cy := [Cy

i j ]i, j , Dzw := diag[Dzw
i ]i ,

Dzu := diag[Dzu
i ]i andDyw := diag[Dyw

i ]i (such thatAi j , Cz
i j andCy

i j are zero matrices when(v j ,vi) /∈ E

andi 6= j) denote the structured state-space matrices;x(k) := vert[xi(k)]i , w(k) := vert[wi(k)]i , u(k) :=

vert[ui(k)]i , z(k) := vert[zi(k)]i and y(k) := vert[yi(k)]i denote the complete state, exogenous input,

control input, regulated output and measurement output vectors corresponding to the networked system

P and be partitioned according toPx, Pw, Pu, Pz andPy, respectively. From (4.3), and the partitions of

x(k), w(k), u(k), z(k) andy(k), we can see that

A∈ S(A(G),Px,Px), Bw ∈ S(I ,Px,Pw), Bu ∈ S(I ,Px,Pu),

Cz ∈ S(A(G),Pz,Px), Dzw∈ S(I ,Pz,Pw), Dzu∈ S(I ,Pz,Pu),

Cy ∈ S(A(G),Py,Px), Dyw ∈ S(I ,Py,Pw).

(4.5)

According to the definition in Section2.3, a controllerK which is a mapping from the measurement

outputsy(k) to the control inputsu(k) is said to stabilize the plantP given in (4.4), if lft (P,K) is BIBO

stable and is said to internally stabilizeP if lft (P,K) is asymptotically stable. Given a networked plant

P that is a strictly causal interaction over a given digraphG, with dynamics given by (4.3), our main

goal is to design internally stabilizing controllers that are also strictly causal interactions over the same

digraphG. From the previous chapter, we saw thatS(G,Py,Pu) andT(G,Py,Pu) are equivalent sets

of systems that can be used to represent the networked systems which are strictly causal interactions
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w3(k)

K2

K1
K3

P2

P1
P3

y2(k)

y1(k) y3(k)

u1(k)

u2(k)

u3(k)

w2(k) z2(k)

z3(k)z1(k)w1(k)

Figure 4.1 A networked controller in feedback with a networked system over the same zero-delay
network.

over the given unit-weight digraphG. But Remark5 points out that designing stabilizing controllers as

structured transfer function matrices is not equivalent todesigning internally stabilizing controllers that

are strictly causal interactions over the given digraphG unless it is shown how to find a stabilizable and

detectable networked system with the same transfer function as an unstable structured transfer function

matrix.

Thus, the classical Zames’ parameterization [19] and Youla-Kučera parameterization [21,22], which

are transfer function approaches for parameterizing all stabilizing controllers, are not suitable for pa-

rameterizing all stabilizing networked controllers that are also strictly causal interactions over a given

unit-weight digraphG. Instead, we use the state-space approach for Youla-Kučera parameterization

based on [23] to parameterize all stabilizing networked controllers, in the next section.

4.2 All internally stabilizing networked controllers

In the standard Youla-Kučera parameterization for internally stabilizing controllers for a general

plant [20], the set of all internally stabilizing controllers is constructed from a model based controller

and a Youla parameterQ which is a stable system. In our case, the plantP is a networked system. In

order to parameterize internally stabilizing networked controllers, first a model based controllerJ is
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chosen to be a networked system by finding appropriateF andL. Then Theorem2 shows that choosing

the Youla parameterQ to be a stable networked system will parameterize the stabilizing networked

controllers for the given networked plant.

Theorem 2. Given a unit-weight digraphG and a stabilizable and detectable networked plant P that is

a strictly causal interaction overG with the sub-system dynamics given by(4.1) and the network interac-

tion given by(4.2). Let the state-space representation for P be given by(4.4) with state-space matrices

structured and partitioned according to(4.5). Given there exist matrices F= [Fi j ]i, j ∈ S(A(G),Pu,Px)

and L= diag[Li ]i ∈ S(I ,Px,Py) such that A+ BuF and A+ LCy are Schur-stable. Then the set of all

internally stabilizing FDLTI controllers for P, which are also strictly causal interactions overG, is

parametrized by

K = lft (J,Q), (4.6)

where J∈ S(G,Px,Pu +Py,Py +Pu) with a state-space representation

J :













xJ(k+1)

u(k)

ξ (k)













=













A+BuF +LCy −L Bu

F 0 I

−Cy I 0

























xJ(k)

y(k)

ψ(k)













(4.7)

and any FDLTI Q∈ Ss(G,Pu,Py). Note that the vectors xJ(k) := vert[xJ
i (k)]i , ξ (k) := vert[ξi(k)]i and

ψ(k) := vert[ψi(k)]i are partitioned according toPx, Py andPu, respectively.

Proof. First, assume thatQ is an FDLTI system inSs(G,Pu,Py). It is a well-known result that given

J in (4.7) and any stable, causal and FDLTI systemQ, the controller given byK = lft (J,Q) internally

stabilizes the given plantP in (4.4). Next, we will show that based onJ in (4.7) and aQ∈Ss(G,Pu,Py),

we can get a strictly causal interaction onG which has the same state-space representation aslft (J,Q).

SinceQ∈ Ss(G,Pu,Py), the state-space representation ofQ is given by(AQ,BQ,CQ,DQ) in the set

S(G,PQ
x ,Pu,Py) for some state partitionPQ

x , which can also be written as

xQ
i (k+1) = ∑

j∈N−

i ∪{i}

AQ
i j x

Q
j (k)+BQ

i ξi(k)

ψi(k) = ∑
j∈N−

i ∪{i}

CQ
i j x

Q
j (k)+DQ

i ξi(k)
∀i ∈ {1, . . . ,n} (4.8)
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w(k)

AQ BQ

DQCQ

Bw

Dzu

Dyw

Bu

0

Cz

Cy

A

Dzw

A+BuF + LCy

0

I

−L Bu

I

0

F

−Cy

y(k)

ψ(k)ξ(k)

z(k)

u(k)

Figure 4.2 Feedback interconnection of the networked plantP and a parametrized controller
K = lft (J,Q).

whereAQ = [AQ
i j ]i, j , CQ = [CQ

i j ]i, j (with AQ
i j andCQ

i j being zero matrices whenever[A(G)]i j = 0), BQ =

diag[BQ
i ]i and DQ = diag[DQ

i ]i . Let xQ(k) = vert[xQ
i (k)]i denotes the state vector ofQ. Using the

sub-matrices ofA, Bu, Cy, F andL; (4.7) can be written as

xJ
i (k+1) = ∑

j∈N−

i ∪{i}

(Ai j +Bu
i Fi j +LiC

y
i j )x

J
j (k)−Liyi(k)+Bu

i ψi(k),

ui(k) = ∑
j∈N−

i ∪{i}

Fi j x
J
j (k)+ ψi(k),

ξi(k) = ∑
j∈N−

i ∪{i}

(−Cy
i j )x

J
j (k)+yi(k).

(4.9)

for all i ∈ {1, . . . ,n}. Combining equations in (4.9) and (4.8), we eliminate the variablesξi(k) andψi(k)

to write the state-space equations corresponding toK = lft (J,Q) as

xK
i (k+1) = ∑

j∈N−

i ∪{i}

AK
i j x

K
j (k)+BK

i yi(k)

ui(k) = ∑
j∈N−

i ∪{i}

CK
i j x

K
j (k)+DK

i yi(k)
∀i ∈ {1, . . . ,n} (4.10)
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wherexK
i (k) =

[

xJ
i (k)

xQ
i (k)

]

and

AK
i j :=







Ai j +Bu
i Fi j +LiC

y
i j −Bu

i D
Q
i Cy

i j Bu
i C

Q
i j

−BQ
i Cy

i j AQ
i j






, BK

i :=







−Li +Bu
i DQ

i

BQ
i






,

CK
i j :=

[

Fi j −DQ
i Cy

i j CQ
i j

]

, DK
i := DQ

i .

From (4.10), it is easy to see thatK ∈ S(G,Px +PQ
x ,Pu,Py). From Lemma5, we know that (4.10) is

equivalent to a strictly causal interaction overG with the same state-space matrices as in (4.10).

On the otherhand, from the theory of Youla parameterization, we know that given matricesF and

L such thatA+ BuF andA+ LCy are Schur-stable, any internally stabilizing controller for the plant

P is represented byK = lft (J,Q) whereJ is given by (4.7) andQ is a stable, causal, FDLTI system.

Now, assume thatK is a strictly causal interaction overG, which implies thatK has a stabilizable and

detectable state-space realization inS(G,Pu,Py). Then, it is easy to see thatK internally stabilizesĴ

given by

Ĵ :













xĴ(k+1)

ψ(k)

y(k)













=













A −L Bu

−F 0 I

Cy I 0

























xĴ(k)

ξ (k)

u(k)













(4.11)

wherexĴ(k) is partitioned according toPx. Following a similar procedure as before, we see thatQ =

lft (Ĵ,K) ∈ S(G,Pu,Py) and in particularQ∈ Ss(G,Pu,Py).

Remark 6. The main result of Theorem2 is to show that given a networked plant, the set of all internally

stabilizing controllers that are also strictly causal interactions over the givenG can be described using

the subspace of structured systems given bySs(G,Pu,Py).

4.2.1 Sufficiency conditions for constructingF and L

Theorem2 requires matrices matricesF = [Fi j ]i, j ∈S(A(G),Pu,Px) andL = diag[Li ]i ∈S(I ,Px,Py)

such thatA+BuF andA+LCy are Schur-stable. The theorem provides a characterizationof all internally

stabilizing networked controllers over the given network based on the matricesF andL satisfying the

above mentioned constraints. In this section, we provide constructive algorithms to obtain such matrices

F andL. Note that for stable plants,F andL can always be chosen to be zero matrices. Thus, Theorem2
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and the results of next part of the Chapter provide a networked solution for a stable networked plant. In

the case the plant is unstable, we propose the following approach based on relaxed LMI conditions.

The stability test for discrete-time systems is given by a discrete-time Lyapunov equation or a Stein

equation. In [24], the stability test has been expressed as a feasibility problem as shown in the following

lemma. This formulation is best suited for imposing sparsity constraints onF andL.

Lemma 6. A matrix A is Schur stable if, and only if, there exist a symmetric matrix M = M′ and a

matrix G such that the LMI






M AG

G′A′ G+G′−M






≻ 0 (4.12)

is feasible.

Note that, in Lemma6, there are no constraints on the matrixG, which is a free parameter. We

extend Lemma6 to construct matricesF and L with the required sparsity constraints by imposing

constraints on the free parameterG and solving the following convex feasibility problems.

Lemma 7. Given matrices A and Bu that are partitioned according to(Px,Px) and (Px,Pu), respec-

tively, there exists a matrix F∈ S(A(G),Pu,Px) such that A+ BuF is Schur-stable if the following

feasibility problem has a solution

min 1

subject to







M AG+BuR

(AG+BuR)′ G+G′−M






≻ 0,

G∈ S(I ,Px,Px),

R∈ S(A(G),Pu,Px).

(4.13)

Proof. If (4.13) has a solution, thenG+ G′ ≻ M ≻ 0 which implies thatG is non-singular (from

Lemma1) and thusG−1 exists. Combining (4.13) with Lemma6, we note thatA+ BuRG−1 is Schur-

stable. Due to the structure ofR andG in (4.13), it is easy to see (using Lemma2) thatF = RG−1 ∈

S(A(G),Pu,Px) andA+BuF is Schur-stable.

Lemma 8. Given matrices A and Cy that are partitioned according to(Px,Px) and (Py,Px), respec-

tively, there exists a matrix L∈ S(I ,Px,Py) such that A+LCy is Schur-stable if the following feasibility
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problem has a solution

min 1

subject to







M A′G+C′
yR

(A′G+C′
yR)′ G+G′−M






≻ 0,

G∈ S(I ,Px,Px),

R∈ S(I ,Py,Px).

(4.14)

Proof. The proof is similar to that of Lemma7. If (4.14) has a solution, thenG+ G′ ≻ M ≻ 0 which

implies thatG is non-singular (from Lemma1) and thusG−1 exists. Combining (4.14) with Lemma6,

we note thatA′+C′
yRG−1 is Schur-stable. Due to the structure ofRandG in (4.14), it is easy to see that

L = (RG−1)′ ∈ S(I ,Px,Py) andA′ +C′
yL

′ is Schur-stable, which impliesA+LCy is Schur-stable.

In this section, we only provide sufficiency conditions for constructing the matricesF andL with

the required properties. Necessary conditions for the existence of such matrices is a more involved topic

and is left for future work.

4.3 Optimal solution for H2 andH∞ networked controller design problems

Let G denote the unit-weight digraph representing a zero-delay network interaction. Given a net-

worked plantP with sub-system dynamics following (4.1) that are interacting over a network specified

by (4.2). Then the problem of finding an internally stabilizing networked controller, that is also a strictly

causal interaction overG, while minimizing an objective function is referred to asNetworked controller

design problemor Networked control problem. In this section, we show how to solve the following

norm-minimizing networked control problems

min ‖Tzw‖α

subject to K is a strictly causal interaction overG,

Tzw is asymptotically stable

(4.15)

whereTzw = lft (P,K) denotes the closed-loop mapping fromw(k) to z(k), andα = 2 or∞. In the case

when α = 2, the solution for (4.15) is referred to asH2 networked controllerand in the case when

α = ∞, it is calledH∞ networked controller.
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Theorem2 provides the parameterization of internally stabilizing networked controllers that are

strictly causal interactions overG asK = lft (J,Q) whereJ is given by (4.7) andQ ∈ Ss(G,Pu,Py)

is a parameter. If there exists matricesF ∈ S(A(G),Pu,Px) and L ∈ S(I ,Px,Py) such thatA+ BuF

andA+LCy are Schur-stable, then the set of all closed-loop transfer matrices fromw(k) to z(k) for an

internally stabilizing networked controller (which is a strictly causal interaction overG) can be obtained

using Theorem2 and the results from ( [20]) as

Czw := {T11(z)+T12(z)Q(z)T21(z) : Q(z) = tf (Q), Q∈ S
s(G,Pu,Py)} (4.16)

where







T11(z) T12(z)

T21(z) T22(z)






=





















A+BuF −BuF Bw Bu

0 A+LCy Bw+LDyw 0

Cz+DzuF −DzuF Dzw Dzu

0 Cy Dyw 0





















. (4.17)

Thus, the norm-minimization networked control problem in (4.15) can be written as

min ‖Tzw(z)‖α

subject to Tzw(z) ∈ Czw

for α = 2 or∞. (4.18)

Since the closed-loop transfer function matrix is simply anaffine function of the Youla parameterQ,

we can rewrite the problem in (4.18) as a convex optimization problem

min ‖T11(z)+T12(z)Q(z)T21(z)‖α

subject to Q(z) = tf(Q),

Q∈ S
s(G,Pu,Py)

for α = 2 or∞. (4.19)

Following the results of Lemma4 and Theorem1, we note that the conditionQ ∈ Ss(G,Pu,Py) is

equivalent totf (Q) ∈ Ts(G,Pu,Py). Since it is convenient to solve the problem (4.19) in the frequency

domain, we write (4.19) as

min ‖T11(z)+T12(z)Q(z)T21(z)‖α

subject to Q(z) ∈ T
s(G,Pu,Py)

for α = 2 or∞. (4.20)

The problem is now reduced to a standard convex optimizationform which can be colved using convex

programming [6]. In the case ofα = 2, the optimization problem in (4.20) can equivalently be expressed
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as an unconstrained optimization problem by following the methodology used in [8] that has a similar

problem setting. By extending the vectorization idea for complex matrices (2.6) to transfer function

matrices, givenG(z) ∈Ra×b
p , we write

vec(G(z)) = vert
[

vert[Gi j (z)]i∈{1,...,a}
]

j∈{1,...,b}
∈Rab×1

p (4.21)

which is nothing but arranging the columns of the matrixG(z) to form a vector. It is also easy to see

that inverse operation from vector to a matrix form is well-defined. It is represented byvec−1(·).

Let vec(Ts(G,Pu,Py)) = {vec(Q(z))|Q(z) ∈ Ts(G,Pu,Py)} denote the set of vectorized elements

of Ts(G,Pu,Py). If Pu = (Pu(1), . . . ,Pu(n)) denotes the output partition, then denotenu := ∑i Pu(i) to

represent the total number of outputs. Similarly, denoteny to represent the total number of inputs. It

can be seen thatvec(Ts(G,Py,Pu)) ∈RH
nuny×1
∞ is a sub-space due to the delay and sparsity constraints

imposed by the setTs(G,Py,Pu). Let a denote the total number of elements ofQ(z) ∈ Ts(G,Py,Pu)

that are not constrained to be zero. From (3.11), we can infer thatQi j (z) is of the formz−t(i, j)Hi j (z)

(with possible pole-zero cancellations at origin) whereHi j (z) ∈ RH∞ and t(i, j) is based onG and

partitionsPu andPy. Thus, we can separate the sparsity and delay terms of the form z−t(i, j) into a

matrix S(z) ∈R
nuny×a
p and say

Q(z) ∈ T
s(G,Py,Pu) ⇐⇒ vec(Q(z)) = S(z)H(z) for someH(z) ∈RHa×1

∞ . (4.22)

For example, consider the followingQ(z) and the decomposition of its vectorization.

Q(z) =













z+1
z−0.5

0.5
z−0.8 0

−0.1
z−0.5

z+0.1
z−0.1 0

1
(z−0.1)(z−0.8)

0.3
z−0.8

z−0.2
z−0.5













(4.23)
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⇒ vec(Q(z)) =























































z+1
z−0.5

−0.1
z−0.5

1
(z−0.1)(z−0.8)

0.5
z−0.8

z+0.1
z−0.1

0.3
z−0.8

0

0

z−0.2
z−0.5























































=























































1 0 0 0 0 0 0

0 z−1 0 0 0 0 0

0 0 z−2 0 0 0 0

0 0 0 z−1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 z−1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1































































































z+1
z−0.5

−0.1z
z−0.5

z2

(z−0.1)(z−0.8)

0.5z
z−0.8

z+0.1
z−0.1

0.3z
z−0.8

z−0.2
z−0.5









































=: S(z)H(z)

(4.24)

Note thatS(z) contains both the delay and sparsity constraints imposed bythe setTs(G,Py,Pu).

Using the results of vectorization, we get

‖T11(z)+T12(z)Q(z)T21(z)‖2 = ‖vec(T11(z)+T12(z)Q(z)T21(z))‖2

=
∥

∥vec(T11(z))+ (T21(z)
′⊗T12(z))vec(Q(z))

∥

∥

2

=
∥

∥vec(T11(z))+ (T21(z)
′⊗T12(z))S(z)H(z)

∥

∥

2

Thus, we can pose the problem (4.20) (whenα = 2) as an unconstrainedH2 problem

min
∥

∥vec(T11(z))+ (T21(z)
′⊗T12(z))S(z)H(z)

∥

∥

2

subject to H(z) ∈RHa×1
∞ ,

(4.25)

which can be solved using standard techniques. LetH⋆(z) denote the solution of the unconstrained

convex optimization problem (4.25). Then the corresponding optimalQ⋆(z) is given by Q⋆(z) =

vec−1(S(z)H⋆(z)). SinceQ⋆(z) ∈ Ts(G,Pu,Py), we can obtain a realizatioñQ = (ÃQ, B̃Q,C̃Q,D̃Q) ∈

Ss(G,Pu,Py), using Theorem1, such thatQ⋆(z) = tf(Q̃) andÃQ is Schur-stable. The corresponding

controller is given byK⋆ = lft (J,Q̃), whereJ is given by (4.7). Using Lemma5, one can obtain a strictly

causal interaction over givenG with the same state-space representation asK⋆. From Theorem2 and

the problem formulation in (4.15), we can see thatK⋆ thus designed is the optimal internally stabilizing

networked controller that is a strictly causal interactionoverG for the given networked plantP.
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CHAPTER 5. Full-order networked controllers

In the previous chapter, we showed how to find an optimal internally stabilizing networked con-

troller given a networked plant. In order to obtain the optimal controller, we converted the networked

control problem in (4.15) into an infinite dimensional unconstrained optimization problem in (4.20).

Note that the solution of (4.20) gives a transfer function matrix for theQ parameter and the use of

Theorem1 leads to a structured state-space representation forQ which can have very large order. In

the case of centralized plants (where there are no structural constraints on state-space or transfer func-

tions), classical theory says that afull-order controller (a controller with the same number of states

as that of the plant) can be an optimal solution to the centralized control problem. As we mentioned,

in the case of networked control problem, the optimal controller might necessarily be of higher-order

than the given plant, which may not be a good option for practical purposes. Model reduction is one

option to reduce the order of the optimal networked controller but the available techniques for model

reduction do not promise any required sparsity structures for the state-space matrices (as we require) of

the reduced-order models. In this chapter we look at design of full-order networked controllers, which

is an alternative option for model reduction.

5.1 Full-order H2 networked controller design

Let G denote the unit-weight digraph representing a zero-delay network interaction. Given a net-

worked plantP with sub-system dynamics following (4.1) that are interacting over a network specified

by (4.2). ThenP has a state-space realization of the form (4.4) with state-space matrices structured and

partitioned according to (4.5). A controllerK is said to be afull-order networked controller for Pif it

is a strictly causal interaction overG with a state-space realization inS(G,Px,Pu,Py) that internally
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stabilizesP. Thus, a full-orderH2 networked control problem can be posed as

min ‖Tzw‖2

subject to K is a full-order strictly causal interaction overG,

Tzw is asymptotically stable,

(5.1)

whereTzw = lft (P,K) denotes the closed-loop mapping fromw(k) to z(k).

In order to solve the problem in (5.1), we need to search for a controllerK in S(G,Px,Pu,Py)

that also makes the closed-loop transfer functionTzw = lft (P,K) internally stable. Let the state-space

representation ofK be(AK ,BK ,CK ,DK)∈S(G,Px,Pu,Py). LetxK(k) denote the states of the controller

which is partitioned according toPx. By connecting the controllerK in feedback with the plantP, we

get a state-space representation for the closed-loop system Tzw (using (2.12)) as






x(k+1)

xK(k+1)






= Ã







x(k)

xK(k)






+ B̃w(k)

z(k) = C̃







x(k)

xK(k)






+ D̃w(k)

(5.2)

where

Ã: =







A+BuDKCy BuCK

BKCy AK






, B̃: =







Bw+BuDKDyw

BKDyw







C̃: =

[

Cz+DzuDKCy DzuCK

]

, D̃ : =

[

Dzw+DzuDKDyw

]

(5.3)

The following lemma gives a characterization ofH2 norm constraint for a discrete-time FDLTI

system in terms of linear matrix inequalities (LMIs).

Lemma 9. Given a system P with a state-space realization(A,B,C,D), A is Schur-stable and‖P‖2
2< µ

if and only if, there exists symmetric matrices M and W such that Tr (W)< µ and













W CM D

(·)′ M 0

(·)′ (·)′ I













≻ 0,













M AM B

(·)′ M 0

(·)′ (·)′ I













≻ 0 (5.4)

are feasible.
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Proof. This proof is a discrete-time version of the proposition in [25].

To prove (only if) part, assume thatA is Schur-stable and‖P‖2
2 < µ for someµ ≥ 0. From (2.15),

we see that

Tr (DD′ +CMcC
′)< µ

⇒∃W ≻ 0∋ DD′ +CMcC
′ ≺W, Tr (W)< µ .

(5.5)

whereMc is given by (2.17). Forε ≥ 0, define

M(ε) =
∞

∑
k=0

Ak(BB′ + ε I)(A′)k. (5.6)

We can see thatM(ε) is continuous inε and equalsMc whenε = 0. From [25], we know thatM(ε)≻Mc

for anyε > 0. Using these properties ofM(ε) and combining with (5.5), we can say that∃ε > 0 such

that

DD′ +CMcC
′ ≺ DD′ +CM(ε)C′ ≺W. (5.7)

For thisε , we note that

AM(ε)A′−M(ε)+BB′+ ε I = 0. (5.8)

Combining equations (5.5), (5.7) and (5.8), we can say that the LMIs in (5.4) are satisfied for some

M(ε) ≻ 0 andW ≻ 0.

To prove (if) part, assume that the LMIs in (5.4) are satisfied for someM ≻ 0 andW ≻ 0. From

(5.4), we note that






M AM

MA′ M






≻ 0 (5.9)

which implies thatA is Schur-stable. Using Schur complements, (5.4) also imply that

M−AMA′−BB′ ≻ 0, W ≻ DD′ +CMC′,

⇒ M ≻ Mc ⇒ CMC′ ≻CMcC
′,

⇒ W ≻ DD′ +CMC′ ≻ DD′ +CMcC
′,

⇒ µ > Tr (W)> Tr (DD′ +CMC′)> Tr (DD′ +CMcC
′),

⇒ ‖P‖2
2 < µ .

Thus the LMIs in (5.4) imply thatA is Schur-stable and‖P‖2
2 < µ .
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As shown in [24], the LMIs in Lemma9 can be extended by introducing an additional matrix

variable so that the product ofA andM does not appear.

Lemma 10. Given a system P with a state-space realization(A,B,C,D), A is Schur-stable and‖P‖2
2<

µ if and only if, there exists a matrix G and symmetric matricesM and W such thatTr (W)< µ and












W CG D

(·)′ G+G′−M 0

(·)′ (·)′ I













≻ 0,













M AG B

(·)′ G+G′−M 0

(·)′ (·)′ I













≻ 0 (5.10)

is feasible.

Proof. The proof is very much similar to the one in [24] with a minor difference due to a non-zeroD in

(5.10).

First assume thatA is Schur-stable and‖P‖2
2 < µ . From Lemma9, we know that there exists

symmetric matricesM andW such that the LMIs in (5.4) are satisfied. It is easy to note that a choice of

G = M would ensure that the LMIs in (5.10) are also satisfied.

Next, assume that there exists a matrixG and symmetric matricesM andW such that the LMIs

in (5.10) are satisfied. Note thatG+ G′ −M ≻ 0 implies thatG is non-singular (from Lemma1)

andG−1 exists. SinceG+ G′ ≻ M ≻ 0, we get(I −G−1M)′M(I −G−1M) ≻ 0, which implies that

G+G′−M ≻ G′M−1G. Combining this observation with the LMIs in (5.10), we can write












W CG D

(·)′ G′M−1G 0

(·)′ (·)′ I













≻ 0,













M AG B

(·)′ G′M−1G 0

(·)′ (·)′ I













≻ 0 (5.11)

Define a block diagonal matrixT :=
[ I 0 0

0 G−1M 0
0 0 I

]

. Multiplying T from the right andT ′ from the left, the

LMIs in (5.11) transform into the LMIs in (5.4). Since symmetric matricesM andW satisfy the LMIs

in (5.4), Lemma9 shows that‖P‖2
2 < µ andA is Schur-stable.

Note thatG can be any matrix and does not have any structural constraints like symmetry. This prop-

erty of decouplingAandC from M allows us to parameterize the controllers belonging toS(G,Px,Py,Pu)

in a flexible form and write theH2 networked control problem in (5.1) as asemi-definite program(SDP)

which can be efficiently solved.
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Theorem 3. Given a unit-weight digraphG and a networked plant P with sub-system dynamics given

by (4.1) interacting over a network defined by(4.2). Let the plant dynamics be given by a state-space

representation in(4.4) with state-space matrices of the form(3.10).

If there exist matrices X,Y , S in S(I ,Px,Px) ( with S−YX being non-singular); Q∈S(A(G),Px,Px),

L ∈ S(A(G),Pu,Px), F ∈ S(I ,Px,Py), R∈ S(I ,Pu,Py); symmetric matrices M, H, W and any general

matrix J of dimensions nx×nx (where nx = ∑i Px(i)) such that

Tr (W)< µ , (5.12)


















W CzX +DzuL Cz+DzuRCy Dzw+DzuRDyw

(·)′ X +X′−M I +S′−J 0

(·)′ (·)′ Y +Y′−H 0

(·)′ (·)′ (·)′ I



















≻ 0, (5.13)



























M J AX+BuL A+BuRCy Bw+BuRDyw

(·)′ H Q YA+FCy YBw +FDyw

(·)′ (·)′ X +X′−M I +S′−J 0

(·)′ (·)′ (·)′ Y +Y′−H 0

(·)′ (·)′ (·)′ (·)′ I



























≻ 0, (5.14)

then there exists K∈ S(G,Px,Pu,Py) such that‖lft (P,K)‖2
2 < µ and lft (P,K) is asymptotically stable.

Proof. Given the block-diagonal matricesX, Y andS , choose matricesU andV in S(I ,Px,Px) such

thatVU = S−YX. This is possible becauseS−YX is assumed to be non-singular. One simple way

is to chooseV = I andU = S−YX. Then construct the matricesAK, BK , CK andDK in the following

order

DK := R,

CK := (L−RCyX)U−1,

BK := V−1(F −YBuR),

AK := V−1[Q−Y(A+BuRCy)X−VBKCyX]U−1−V−1YBuCK

(5.15)

Based on the structure and partitions ofA, Bu, Cy, Q, L, F, R (from hypothesis) andU , V from construc-

tion, we can see that(AK ,BK ,Ck,DK) ∈ S(G,Px,Pu,Py). Let us denote(AK ,BK ,Ck,DK) by a system
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K. The state-space equations of the closed-loop systemTzw= lft (P,K) is given by (5.2) and the matrices

Ã, B̃, C̃ andD̃ are given by (5.3).

LetG=
[

X Γ
U Λ

]

, whereΓ = (I −XY′)(V ′)−1 andΛ =−(UY′)(V ′)−1. Then consider a transformation

matrix T =
[

I Y′

0 V′

]

. Note thatT−1 exists and is equal to
[

I Y′(V′)−1

0 (V′)−1

]

, sinceV is non-singular. Also,

GT =







X Γ

U Λ













I Y ′

0 V ′






=







X I

U 0






(5.16)

Combining equation (5.15), (5.3) and (5.16), we get the following identities

T ′ÃGT =







AX+BuL A+BuRCy

Q YA+FCy






, T ′B̃ =







Bw +BuRDyw

YBw +FDyw






,

C̃GT =

[

CzX +DzuL Cz+DzuRCy

]

, T ′(G+G′)T =







X +X′ I +S′

(·)′ Y +Y′






.

(5.17)

Substituting (5.17) in (5.13) and (5.14) give us the following inequalities












W C̃GT D̃

(·)′ T ′(G+G′)T − M̄ 0

(·)′ (·)′ I













≻ 0, (5.18)













M̄ ÃGT B̃

(·)′ T ′(G+G′)T − M̄ 0

(·)′ (·)′ I













≻ 0 (5.19)

whereM̄ : =
[

M J
J′ H

]

is a positive definite matrix. Let̃T :=
[ I 0 0

0 T−1 0
0 0 I

]

andT̂ :=

[

T−1 0 0
0 T−1 0
0 0 I

]

. Multiplying

(5.18) with T̃ ′ on the left andT̃ on the right; and (5.19) with T̂ ′ on the left andT̂ on the right gives us












W C̃G D̃

(·)′ G+G′− M̃ 0

(·)′ (·)′ I













≻ 0,













M̃ ÃG B̃

(·)′ G+G′− M̃ 0

(·)′ (·)′ I













≻ 0 (5.20)

whereM̃ : = (T ′)−1M̄T−1, is positive definite sincēM ≻ 0. From (5.20), Lemma10 can be used to

show that‖lft (P,K)‖2
2< µ (whereK = (AK ,BK ,CK ,DK) while AK , BK , CK andDK are given by (5.15))

andÃ is Schur-stable which means that the closed-loop system is internally stable.

ThusK = (AK ,BK ,CK ,DK) ∈ S(G,Px,Pu,Py) internally stabilizesP and‖lft (P,K)‖2
2 < µ .
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Consider a semi-definite program (SDP) given by

min µ

subject to 0< trace(W)< µ

LMIs (5.13) and (5.14) are satisfied

(5.21)

Based on Theorem3, it is easy to show that if we find a solution to the optimization problem given in

(5.21) then we can obtain a full-order stabilizing networked controller (that is a strictly causal interaction

overG) for a networked plantP described by (4.4) using equations in (5.15).

Remark 7. Note that Theorem3 only provides us a sufficiency condition to find a full-order stabilizing

networked controller. Since we do not have a necessary condition, the controller obtained from(5.21)

and Theorem3 is only a sub-optimal solution to the full-orderH2 networked control problem given in

(5.1).

Note that the solution of the SDP (5.21) might give matricesX,Y andSsuch thatS−YX is singular.

Under that situation, one can perturb the matrix byε I , for some smallε , to calculate non-singular

block-diagonal matricesU andV such thatVU = S−YX+ ε I . This might disrupt the performance of

the synthesized controller slightly but is not a big problem.

5.2 Full-order H∞ networked controller design

Let G denote the unit-weight digraph representing a zero-delay network interaction. LetP be a net-

worked plant with a state-space realization of the form (4.4) while the state-space matrices are structured

and partitioned according to (4.5). Similar to theH2 networked control problem in (5.1), a full-order

H∞ networked control problem can be posed as

min ‖Tzw‖∞

subject to K is a full-order strictly causal interaction overG,

Tzw is asymptotically stable,

(5.22)

whereTzw = lft (P,K) denotes the closed-loop mapping fromw(k) to z(k).

The procedure for solving theH∞ networked control problem given in (5.22) is very much sim-

ilar to the procedure followed for theH2 counter-part. In order to solve the problem in (5.22), we
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need to search for a stabilizing controllerK in S(G,Px,Pu,Py) that also minimizes theH∞ norm of

the closed-loop transfer functionTzw. Let the state-space representation ofK be (AK ,BK ,CK ,DK) ∈

S(G,Px,Pu,Py). Let xK(k) denote the state vector of the controller which is partitioned according

to Px. The feedback interconnection of the plantP and a networked controllerK gives a closed-loop

state-space representation as given in (5.2).

The following lemma gives a characterization ofH∞ norm constraint for a discrete-time linear

time-invariant system in terms of LMIs.

Lemma 11. Let P be a system with(A,B,C,D) as it’s state-space realization. Then A is Schur-stable

and‖P‖2
∞ < µ if and only if there exists symmetric matrix M≻ 0 such that



















M AM B 0

(·)′ M 0 MC′

(·)′ (·)′ I D′

(·)′ (·)′ (·)′ µ I



















� 0 (5.23)

is feasible.

Proof. The proof for this lemma can be obtained from a scaled versionof the bounded-real lemma for

discrete-time systems. The following statement can be obtained by slightly modifying the derivations

in [26]. P is asymptotically stable and‖P‖2
∞ < µ if and only if there existM̃ ≻ 0 and matricesL, W

such that

A′MA+C′C+L′L = M̃,

B′MB+D′D+W′W = µ I ,

A′MB+C′D+L′W = 0.

(5.24)
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This scaled version of bounded-real lemma (5.24) can be written in terms of LMIs as follows






L′

W′







[

L W

]

� 0

⇔







M̃−A′M̃A−C′C A′M̃B−C′D

(·)′ µ I −B′M̃B−D′D






� 0

⇔







M̃ 0

0 µ I






−







A′ C′

B′ D′













M̃ 0

0 I













A B

C D






� 0

⇔







M̄ 0

0 I






−







A′ C′

B′ D′













M̄ 0

0 µ−1I













A B

C D






� 0

⇔







M̄−1 0

0 I






−







M̄−1A′ M̄−1C′

B′ D′













M̄ 0

0 µ−1I













AM̄−1 B

CM̄−1 D






� 0

⇔



















M 0 MA′ MC′

0 I B′ D′

AM B M 0

CM D 0 µ I



















� 0 ⇔



















M AM B 0

MA′ M 0 MC′

B′ 0 I D′

0 CM D µ I



















� 0

whereM̄ : = µ−1M̃ andM̃ = M̄−1. Both of them are positive definite becauseM̃ is positive definite

andµ > 0. Since
[

L′

W′

]

[L W ] � 0 for all L andW, we get thatA is Schur-stable and‖P‖2
∞ < µ if and

only if there existM ≻ 0 such that (5.23) is satisfied.

As shown in [24], an LMI characterization of theH∞ norm constraint for a discrete-time linear

time-invariant system can be expressed as shown in the following lemma.

Lemma 12. Given a system P with a state-space realization(A,B,C,D), A is Schur-stable and‖P‖2
∞ <

µ if and only if there exists a matrix G and a symmetric matrix M such that


















M AG B 0

(·)′ G+G′−M 0 G′C′

(·)′ (·)′ I D′

(·)′ (·)′ (·)′ µ I



















� 0 (5.25)

is feasible.
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Proof. Using a similar argument as in the proof for Lemma10, (only if) part can be proved by choosing

G = M and using Lemma11.

(if) part is proved by usingG+G′−M ≻ G′M−1G, which means that the LMI in (5.25) implies



















M AG B 0

(·)′ G′M−1G 0 G′C′

(·)′ (·)′ I D′

(·)′ (·)′ (·)′ µ I



















� 0 (5.26)

Define a block diagonal matrixT :=

[ I 0 0 0
0 G−1M 0 0
0 0 I 0
0 0 0 I

]

. Multiplying T from the right andT ′ from the left,

the LMI in (5.26) transforms into the LMI in (5.23). Since symmetric matricesM andW satisfy (5.23),

Lemma11 shows that‖P‖2
∞ < µ andA is Schur-stable.

Theorem 4. Given a unit-weight digraphG and a networked plant P with sub-system dynamics given

by (4.1) interacting over a network defined by(4.2). Let the plant dynamics be given by a state-space

representation in(4.4) with state-space matrices of the form(3.10).

If there exist matrices X,Y , S in S(I ,Px,Px) ( with S−YX being non-singular); Q∈S(A(G),Px,Px),

L ∈ S(A(G),Pu,Px), F ∈ S(I ,Px,Py), R∈ S(I ,Pu,Py); symmetric matrices M, H, W and any general

matrix J of dimensions nx×nx (where nx = ∑i Px(i)) such that

































M J AX+BuL A+BuRCy Bw +BuRDyw 0

(·)′ H Q YA+FCy YBw +FDyw 0

(·)′ (·)′ X +X′−M I +S′−J 0 X′C′
z+L′D′

zu

(·)′ (·)′ (·)′ Y +Y′−H 0 C′
z+C′

yR
′D′

zu

(·)′ (·)′ (·)′ (·)′ I D′
zw+D′

ywR′D′
zu

(·)′ (·)′ (·)′ (·)′ (·)′ µ I

































� 0, (5.27)

then there exists K∈S(G,Px,Pu,Py) such that‖lft (P,K)‖2
∞ < µ andlft (P,K) is asymptotically stable.

Proof. The proof for this theorem is very much similar to the proof for Theorem3. So, we shall skip

the details.
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Consider a semi-definite program (SDP) given by

min µ

subject to LMI (5.27) is satisfied
(5.28)

Based on Theorem4, it is easy to show that if we find a solution to the optimization problem given in

(5.28) then we can obtain a full-order stabilizing networked controller (that is a strictly causal interaction

overG) for a networked plantP described by (4.4) using equations in (5.15).

Remark 8. Note that Theorem4 only provides us a sufficiency condition to find a full-order stabilizing

networked controller. Since we do not have a necessary condition, the controller obtained from(5.28)

and Theorem4 is only a sub-optimal solution to the full-orderH∞ networked control problem given in

(5.22).
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CHAPTER 6. Networked estimation

In the previous chapters, we considered the networked control problem where a networked con-

troller is designed to internally stabilized a given networked plant while minimizing the norm of the

closed-loop system. In this chapter, we consider the problem of networked estimationor filtering which

is the design of networked estimators that are strictly causal interactions over a given unit-weight di-

graphG. The objective of this problem is to make each sub-system of the networked estimator asymp-

totically track the states of the corresponding sub-systemof the networked plant by exchanging infor-

mation with other estimator sub-systems.

In the following sections, the above mentioned networked estimation problem is formulated and

analyzed to estimate the states of a given plant by minimizing the effect of external disturbances and

measurement noise. We shall make some assumptions about detectability of the plant dynamics to

assure the existence of a networked estimator.

6.1 Networked filtering for networked systems

Let a unit-weight digraphG be the representation of a given zero-delay network interconnection.

Given a networked systemP made of discrete-time FDLTI sub-systems{Pi}i interacting over the net-

work represented byG. Let xi(k) be the state vector andwi(k) denote the disturbance and measurement

noise vector corresponding toPi at time instantk. The dynamics of sub-systemPi is be given by the

following state equations

xi(k+1) = Aii xi(k)+Biwi(k)+ ∑
j∈N−

i

Bζ
i j ζi j (k),

yi(k) = Cii xi(k)+Diwi(k)+ ∑
j∈N−

i

Dζ
i j ζi j (k),

ηri (k) = Cη
ri xi(k), ∀r ∈ N+

i

∀ i ∈ {1, . . . ,n} (6.1)
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whereηri (k) denotes the message vector transmitted from sub-systemPi to sub-systemPr , while ζi j (k)

denotes the vector received by sub-systemPi from sub-systemPj at time instantk. The zero-delay

network interaction is written as

ζi j (k) = ηi j (k) ∀ (v j ,vi) ∈ E (6.2)

Combining the equations (6.1) and (6.2), we get state-space equations corresponding to the net-

worked systemP as follows

xi(k+1) = Aii xi(k)+Biwi(k)+ ∑
j∈N−

i

Ai j x j(k),

yi(k) = Cii xi(k)+Diwi(k)+ ∑
j∈N−

i

Ci j ζi j (k),
(6.3)

whereAi j = Bζ
i jC

η
i j andCi j = Dζ

i jC
η
i j . The equations in (6.3) can be written in a simpler form as

x(k+1) = Ax(k)+Bw(k),

y(k) = Cx(k)+Dw(k)
(6.4)

wherex(k) = vert[xi(k)]i , y(k) = vert[yi(k)]i andw(k)= vert[wi(k)]i are the state, measurement and dis-

turbance vectors (partitioned according toPx,Py andPw, respectively); whileA := [Ai j ]i, j ∈S(A(G),Px,Px),

B := diag[Bi]i ∈ S(I ,Px,Pw), C := [Ci j ]i, j ∈ S(A(G),Py,Px) andD := diag[Di]i ∈ S(A(G),Py,Pw).

Corresponding to this networked systemP, we design a networked estimatorE (as shown in Fig.6.1)

such that each sub-unitEi estimates the states of the sub-systemPi by exchanging messages over the

same causal networkG. In a norm-minimizing networked filtering problem, our objective is to mini-

mize‖x(k)− x̂(k)‖α (for α = 2 or∞) wherex̂(k) : = vert[x̂i(k)]i andx̂i(k) denotes the estimated state

vector corresponding to each sub-systemEi.

This problem can easily be converted into a networked control problem, discussed in previous chap-

ters, by treating estimates as control inputs and writing anequivalent generalized plant’s sub-systems

Gi as follows

xi(k+1) = ∑
j∈N−

i ∪{i}

Ai j x j(k)+Biwi(k),

zi(k) = xi(k)−ui(k),

yi(k) = ∑
j∈N−

i ∪{i}

Ci j x j(k)+Diwi(k)

∀ i (6.5)
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Network

Network

x1(k)

. . .

. . .P1 P2 Pn

EnE2E1
x̂n(k)x̂2(k)x̂1(k)

y1(k) y2(k) yn(k)

w1(k) w2(k) wn(k)

x2(k) xn(k)

Figure 6.1 Networked plantP and a networked estimatorE in terms of their sub-systems{Pi}i and
{Ei}i .

whereui(k) = x̂i(k) is the state estimate andzi(k) represents the estimation error corresponding toPi

at time instantk, for all i. Since the dimension ofxi(k) and x̂i(k) are the same, we know thatu(k) :=

vert[ui(k)]i andz(k) := vert[zi(k)]i are partitioned according toPx. Pictorially, we can view the problem

as Fig.6.2whereG is the generalized plant, corresponding to the networked systemP, with a state-space

representation given by (based on the state-space matricesof P)













x(k+1)

z(k)

y(k)













=













A B 0

I 0 −I

C D 0

























x(k)

w(k)

u(k)













, (6.6)

andE is stable networked estimator that is a strictly causal interaction overG. Note that the generalized

plant in (6.6) is similar to the networked plant in (4.4).

Our objective to design a networked estimator for a networked plantP can be interpreted as design

of a stable and networked controllerE for the generalized plantG that minimizes the closed-loop system

norm‖Tzw‖α = ‖lft (G,E)‖α for α = 2 or∞. Based on previous chapters (Lemma4, Theorem1 and

Lemma5), we notice that stable networked estimators which are strictly causal interactions over unit-

weight digraphG can equivalently be treated as elements ofSs(G,Px,Py) or Ts(G,Px,Py). Thus the
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y(k)
G

E

z(k) = x(k) − x̂(k)

x̂(k)

w(k)

Figure 6.2 An equivalent model using a generalized plantG in a feedback interconnection with the
networked estimatorE.

networked filtering problem can be written as

min ‖Tzw‖α

subject toE ∈ S
s(G,Px,Py) or T

s(G,Px,Py),

Tzw is BIBO stable.

(6.7)

For estimation, we only require the closed-loop transfer function Tzw to be BIBO stable and do not

require internal stabilization of the given plant. Thus, the problem in (6.7) is much simpler than the

corresponding networked controller design problem in (4.15). Since we only require BIBO stability of

Tzw, one can also use the results of [8] to solve the problem in (6.7).

6.1.1 Parametrization of all stable networked estimators

Using the methodology given in the previous chapter, we parameterize the set of all possible stable

networked estimators that are strictly causal interactions overG for a given networked plantP overG,

using the following theorem.

Theorem 5. Given a unit-weight digraphG and a networked system P which is a strictly causal inter-

action overG with a state-space representation given by(6.4). Given a matrix L∈S(I ,Px,Py) such that

A+ LC is stable. Then the set of all stable networked estimators(that are strictly causal interactions

overG) that drive the estimateŝx(k) asymptotically to x(k) is given by

E = lft (J,Q)
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where Q∈ Ss(G,Px,Py) and

J :













xJ(k+1)

x̂(k)

ξ (k)

























A+LC −L 0

I 0 I

−C I 0

























xJ(k)

y(k)

ψ(k)













. (6.8)

Note that the vectors xJ(k) := vert[xJ
i (k)]i , x̂(k) := vert[x̂i(k)]i , ξ (k) := vert[ξi(k)]i andψ(k) := vert[ψi(k)]i

are partitioned according toPx, Px, Py andPx, respectively.

Proof. We prove this Theorem as a special case of Theorem2 .

Given the networked plantP in (6.4), define a generalized plantG in (6.6) such thatui(k) = x̂i(k)

for all i.

First, assume thatQ = (AQ,BQ,CQ,DQ) ∈ Ss(G,Px,Py). So,AQ is Schur-stable. LetxQ(k) denote

the state vector ofQ which is partitioned according toPQ
x . Then,E = lft (J,Q) whereJ is given by

(6.8). Using (2.12), we get a state-space representation forE to be












xJ(k+1)

xQ(k+1)

u(k)

























A+LC 0 −L

−BQC AQ BQ

I −DQC CQ DQ

























xJ(k)

xQ(k)

y(k)













. (6.9)

SinceA+LC andAQ are Schur-stable, we can see thatE in (6.9) is asymptotically stable.

The state vectorxJ(k) = vert[xJ
i (k)]i is partitioned according toPx and xQ(k) = vert[xQ

i (k)]i is

partitioned according toPQ
x . Let the state-vector forE be expressed asxE(k) := vert[xE

i (k)]i where

xE
i (k) =

[

xJ
i (k)

xQ
i (k)

]

. ThusxE(k) is partitioned according toPx +PQ
x . Then the dynamics ofE in (6.9) can

equivalently be written as

xE
i (k+1) = ∑

j∈N−

i ∪{i}

AE
i j x j(k)+BE

i yi(k),

ui(k) = ∑
j∈N−

i ∪{i}

CE
i j x j(k)+DE

i yi(k),
∀ i (6.10)

where

AE
i j =







Ai j +LiCi j 0

−BQ
i Ci j AQ

i j






, BE

i =







−Li

BQ
i






,

CE
i j =

[

I −DQ
i Ci j CQ

i j

]

, DE
i = DQ

i .

∀i, j (6.11)
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Based on the state-space dynamics in(6.10) and the fact thatE is asymptotically stable, we can say

thatE ∈ Ss(G,Px +PQ
x ,Pu,Py). Lemma5 shows thatE can be viewed as a strictly causal interaction

overG.

−C

w(k)

y(k)

z(k) = x(k) − x̂(k)

I

B

−I

D

AQ BQ

DQCQ

ψ(k)

A+ LC −L

0

0

0

0

I

C

A

0

I

0u(k) = x̂(k)

ξ(k)

I

Figure 6.3 Representing an estimation problem as a feedbackinterconnection of generalized plantG
and a parametrized estimatorE = lft (J,Q).

To show thatE given by (6.9) estimates the states of the networked systemP, we also need to show

that x̂(k) → x(k) ask→∞ wherex̂(k) denotes the estimated vector fromE andx(k) denotes the state

vector ofP at time instantk. By definingx̄(k) : = x(k)− xJ(k) and following the equations (6.4) and

(6.9), we get

x̄(k+1) = x(k+1)−xJ(k+1)

= Ax(k)+Bw(k)− (A+LC)xJ(k)+Ly(k)

= (A+LC)(x(k)−xJ(k))+ (B+LD)w(k)

= (A+LC)x̄(k)+ (B+LD)w(k),

(6.12)

xQ(k+1) = AQxQ(k)+BQ(−CxJ(k)+y(k))

= AQxQ(k)+BQC(x(k)−xJ(k))+BQDw(k)

= AQxQ(k)+BQCx̄(k)+BQDw(k),

(6.13)
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z(k) = x(k)− x̂(k) = x(k)−u(k)

= x(k)− (I −DQC)xJ(k)−CQxQ(k)−DQy(k)

= (I −DQC)(x(k)−xJ(k))−CQxQ(k)−DQDw(k)

= (I −DQC)x̄(k)−CQxQ(k)−DQDw(k)

(6.14)

From (6.12), (6.13) and (6.14), the dynamics connecting the estimation errorz(k) and the input

disturbancew(k) can be written in terms of the states ¯x(k) andxQ(k) as follows







x̄(k+1)

xQ(k+1)






=







A+LC 0

BQC AQ













x̄(k)

xQ(k)






x(k)+







B+LD

BQD






w(k),

z(k) =

[

I −DQC −CQ

]







x̄(k)

xQ(k)






−DQDw(k).

(6.15)

SinceA+ LC andAQ are Schur-stable, so is
[

A+LC 0
BQC AQ

]

because of its block-diagonal structure. Thus,

the estimation error asymptotically goes to zero usingE = lft (J,Q).

On the otherhand, from the theory of Youla parameterization, we know that givenL such that

A+ LCy is Schur-stable, any stabilizing estimator forG given by (6.6) is represented byE = lft (J,Q)

whereJ is given by (6.8) andQ is a stable, causal, FDLTI system. If we also assume thatE is a stable

strictly causal interaction overG, thenE has a state-space realization inSs(G,Px,Py). Then, it is easy

to see thatE stabilizesĴ given by

Ĵ :













xĴ(k+1)

ψ(k)

y(k)













=













A −L 0

−I 0 I

C I 0

























xĴ(k)

ξ (k)

u(k)













(6.16)

wherexĴ(k) is partitioned according toPx. Following a similar procedure as before, we see thatQ =

lft (Ĵ,E) ∈ Ss(G,Px,Py).

6.1.2 Optimal networked estimator

Using the sufficiency condition given in Lemma8, we know that if the feasibility problem in (4.14)

has a solution, then there existsL ∈ S(I ,Px,Py) such thatA+ LCy is Schur-stable. If such anL exists,

the set of all closed-loop transfer matrices fromw(k) to z(k) can be obtained using Theorem5 and
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following (4.16), (4.17) as

Czw = {T11(z)+T12(z)Q(z)T21(z) : Q(z) = tf (Q), Q∈ S
s(G,Px,Py)} (6.17)

where







T11(z) T12(z)

T21(z) T22(z)






=





















A 0 B 0

0 A+LC B+LD 0

0 I 0 −I

0 C D 0





















=













A+LC B+LD 0

I 0 −I

C D 0













.

(6.18)

Note that (6.18) corresponds to

T11(z) =







A+LC B+LD

I 0






, T12(z) = −I ,

T21(z) =







A+LC B+LD

C D






, T22(z) = 0.

Since the closed-loop transfer matrix is simply an affine function of the Youla parameterQ, we can

rewrite the networked estimation problem in (6.7) as a convex optimization problem

min ‖T11(z)−Q(z)T21(z)‖α

subject to Q(z) = tf(Q),

Q∈ S
s(G,Px,Py),

for α = 2 or∞ (6.19)

which is similar to the problem (4.19). Following the results of Lemma4 and Theorem1, we note that

the conditionQ∈ Ss(G,Px,Py) is equivalent totf(Q) ∈ Ts(G,Px,Py). Since it is convenient to solve

the problem (6.19) in the frequency domain, we write (6.19) as

min ‖T11(z)−Q(z)T21(z)‖α

subject to Q(z) ∈ T
s(G,Px,Py).

for α = 2 or∞ (6.20)
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Using the same vectorization ideas as in Chapter4, we can pose the problem (6.20) (whenα = 2) as an

unconstrainedH2 problem

min
∥

∥vec(T11(z))− (T21(z)
′⊗ I)S(z)H(z)

∥

∥

2

subject to H(z) ∈RHa×1
∞

(6.21)

wherea denotes the total number of elements ofQ(z)∈Ts(G,Px,Py) that are not constrained to be zero

andS(z) is given by (4.22). The unconstrained convex optimization problem in (6.21) can be solved

using standard techniques. LetH⋆(z) denote the solution of the optimization problem (6.21). Then the

corresponding optimalQ⋆(z) is given byQ⋆(z) = vec−1(S(z)H⋆(z)). SinceQ⋆(z) ∈ Ts(G,Px,Py), we

can obtain a state-space realizationQ̃ = (ÃQ, B̃Q,C̃Q,D̃Q) ∈ Ss(G,Px,Py), using Theorem1, such that

Q⋆(z) = tf (Q̃) andÃQ is Schur-stable. The corresponding estimator is given byE⋆ = lft (J,Q̃), where

J is given by (6.8). Using Lemma5, one can obtain a strictly causal interaction over givenG with the

same state-space representation asE⋆. From Theorem5 and the problem formulation in (6.7), we can

see thatE⋆ thus designed is the optimal stable networked estimator that is a strictly causal interaction

overG for the given networked plantP in (6.3).
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CHAPTER 7. Networked systems over delay networks

In previous chapters, we studied networked systems that arestrictly causal interactions over zero-

delay networks. We saw that the state-space and input-output representations of a strictly causal in-

teraction of sub-systems over a zero-delay network could bedescribed using a unit-weight digraphG

corresponding to the zero-delay network. Based on these connections withG, we derived networked

controllers and estimators for networked plants when the plants, controllers and estimators are all strictly

causal interactions over the same digraphG. Now, we look at possible extensions of the theory devel-

oped for zero-delay network case to a general delay network case.

Let the discrete-time networked system be represented by a weighted digraphG as described in

Section3.1.1. Let G = (V,E) be a weighted digraph whereW((vi ,v j)) ∈ N denotes the weight of the

edge(vi ,v j) ∈ E . Equation (3.4) shows that the network delayti j (on the communication link from

sub-systemPj to Pi) andW((v j ,vi)) are related by

ti j = W((v j ,vi))−1 ∀ (v j ,vi) ∈ E . (7.1)

We also definedWi j as the weight of a minimum-weight path from vertexv j to vertexvi . If π is a

directed path, we denote the weight ofπ by W(π), which is the sum of weights of all the edges in the

path. Thus, we can write

Wi j = inf{W(π) : π is a directed path from vertexv j to vi}. (7.2)

Note thatπ = vi is treated as a directed path from vertexvi to vi and weight of such a path is equal to

zero. So,Wii = 0 for all i since there are no edges in the pathπ = vi . If there is no directed path from

vertexv j to vi , j 6= i, thenWi j = ∞ since infimum (in (7.2)) of an empty set is treated as∞.

Given a weighted digraphG, let a networked systemP be described in terms of it’s sub-system

dynamics given by (3.5) and the network interaction given by (3.6). By combining (3.5), (3.6) and
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(7.1), we can eliminate the network variablesζi j (k) andηir (k), and write the dynamics of the networked

systemP as

xi(k+1) = Aii xi(k)+Bu
i ui(k)+ ∑

j∈N−

i

Ai j x j(k− ti j )

yi(k) = Cy
ii xi(k)+Dyu

ii ui(k)+ ∑
j∈N−

i

Cy
i j x j(k− ti j ),

∀ i ∈ {1, . . . ,n} (7.3)

whereAi j := Bζ
i jC

η
ji andCy

i j := Dyζ
i j Cη

ji .

Lemma 13. Given a weighted digraphG, a networked system P that is a strictly causal interaction over

G with dynamics given by(7.3) is asymptotically stable if and only if(zI−A(z)) has full rank for any

z∈ C\D̄ where

[A(z)]i j :=































Aii if i = j,

z−ti j Ai j if (v j ,vi) ∈ E ,

0 otherwise

(7.4)

where ti j is given by(7.1).

Proof. The dynamics ofP are given by (7.3). In order to check the stability of the system, we can

assume the inputs to be zero and disregard the outputs and just consider the autonomous part ofP given

by

xi(k+1) = Aii xi(k)+ ∑
j∈N−

i

Ai j x j(k− ti j ) ∀i (7.5)

Let us definex(0)
i j (k) = x j(k) for all i ∈ {1, . . . ,n} and j ∈ N−

i . Corresponding to the non-zero

delays in the communication links (given by (7.1)), define the followingnetwork states{x(r)
i j (k)}i, j,r for

all i ∈ {1, . . . ,n}, j ∈ N−
i andr ∈ {1, . . . , ti j } (whenti j 6= 0)

x(r)
i j (k) := x(r−1)

i j (k−1) (7.6)

Thus, the dynamics in (7.5) can be written as

xi(k+1) = Aii xi(k)+ ∑
j∈N−

i

Ai j x
(ti j )
i j (k) ∀i. (7.7)

By defining a state-vector ¯x(k) of the form

x̄(k) =







vert[xi(k)]i∈{1,...,n}

vert[x(r)
i j (k)]i∈{1,...,n}, j∈N−

i ,r∈{1,...,ti j }






, (7.8)
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we can write the state equations corresponding to (7.5) as

x̄(k+1) = Āx̄(k) (7.9)

which is a collection of the equations (7.6) and (7.7). From the formulation of (7.9), we can see that the

given networked systemP is asymptotically stable iff̄A is Schur-stable, i.e.(zI− Ā) has full rank for

all z∈ C\D̄.

We now show that for anyλ ∈ C\D̄, (λ I − Ā) does not have full rank iff(λ I −A(λ )) does not have

full rank, which will prove the hypothesis.

(⇒) Assume that(λ I − Ā) does not have full rank for someλ ∈ C\D̄. Then there exists a vector̄V

of the form

V̄ =







vert[Vi ]i∈{1,...,n}

vert[V(r)
i j ]i∈{1,...,n}, j∈N−

i ,r∈{1,...,ti j }






, (7.10)

for some{Vi}i∈{1,...,n} (dimension of the vectorVi is Px(i)×1) and{V(r)
i j }i∈{1,...,n}, j∈N−

i ,r∈{1,...,ti j }
such

that(λ I − Ā)V̄ = 0 or

λVi = AiiVi + ∑
j∈N−

i

Ai jV
(ti j )
i j ∀ i ∈ {1, . . . ,n}

λV(r)
i j = V(r−1)

i j ∀ i ∈ {1, . . . ,n}, j ∈ N−
i , r ∈ {1, . . . , ti j }

(7.11)

whereV(0)
i j = Vj . From (7.11), we note that

λVi = AiiVi + ∑
j∈N−

i

λ−ti j Ai jVj ∀ i ∈ {1, . . . ,n}

⇒ (λ I −A(λ ))V = 0

(7.12)

whereV = vert[Vi ]i (partitioned according toPx) andA(λ ) is given by (7.4). Thus, (7.12) shows that

(λ I −A(λ )) does not have full rank if(λ I − Ā) does not have full rank.

(⇐) Assume that(λ I −A(λ )) does not have full rank for someλ ∈C\D̄. Then there exists a vector

V = vert[Vi ]i , partitioned according toPx, such that(λ I −A(λ ))V = 0.

By defining{V(r)
i j }i∈{1,...,n}, j∈N−

i ,r∈{1,...,ti j }
such that

V(r)
i j = λ−1V(r−1)

i j ∀ i ∈ {1, . . . ,n}, j ∈ N−
i , r ∈ {1, . . . , ti j } (7.13)
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whereV(0)
i j = Vj for all i, j ∈ N−

i . Following the same procedure as before, it is easy to show that

(λ I − Ā)V̄ = 0 for V̄ formed from (7.10). Thus(λ I − Ā) does not have full rank if(λ I −A(λ )) does

not have full rank.

In order to describe networked systems over delay networks in (7.3) in a simpler fashion, we in-

troduce a delay shift operator denoted byq such thatx(k−1) = qx(k) wherex(k) is any discrete-time

signal. The delay shift operator was also used in [9] to describe systems over delay networks. From the

definition of the shift operator, it is easy to see that the transfer function corresponding to the operator

is z−1. Based on the shift operator, we call a matrixJ(q) sparsity and delay pattern matrixif it’s entries

[J(q)]i j are either 0 orqr for somer ∈ N0. Note that, such a sparsity and delay pattern matrix can be

used to describe not just the sparsity pattern in state-space or transfer function matrices but also the

delay terms.

We say that a matrixA(q) is structured according to a sparsity and delay structure J(q) if [A(q)]i j =

[J(q)]i j Ai j (q) (for all i, j) where{Ai j (q)}i, j are all matrices of appropriate dimensions containing poly-

nomials ofq.

Definition 8. Given a sparsity and delay pattern matrix J(q) and n−tuplesPa, Pb, let S(J(q),Pa,Pb)

denote the set of matrices that are partitioned according to(Pa,Pb) and structured according to J(q).

Given a weighted digraphG with n vertices, using the delay shift operatorq, we shall define sparsity

and delay structures onG by extending the definition ofA(G) andAm(G) to A(G,q) andAm(G,q) (of

dimensionn×n) for m∈ N0 given by

[A(G,q)]i j :=































1 if i = j,

qti j if (v j ,vi) ∈ E ,

0 otherwise

(7.14)

[Am(G,q)]i j :=















































1 if i = j,

qW(πi j )−l(πi j ) if πi j is a directed path from vertexv j to vi

of length at mostmand with smallest weight

0 otherwise.

(7.15)
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whereti j is given by (7.1) andl(πi j ) denotes the length of pathπi j .

Based on the sparsity and delay pattern matrices in (7.14) and (7.15), we can extend Lemma3 in

the following way.

Lemma 14. Given an n−tuplePa and a digraphG = (V,E) (with n vertices) with the sparsity and

delay structuresA(G,q) and Am(G,q) (for all m ∈ N0) given by(7.14) and (7.15), let {Ai(q)}i be

a sequence of matrices such that Ai(q) ∈ S(A(G,q),Pa,Pa) for all i. Then Bm(q) =
m

∏
k=1

Ak(q) ∈

S(Am(G,q),Pa,Pa) for all m.

Proof. From the definition ofAm(G,q) in (7.15), we can see thatA1(G,q) = A(G,q). Thus, from

hypothesis, we know thatB1(q) = A1(q) ∈ S(A1(G,q),Pa,Pa).

Now, assume thatBm(q) = ∏m
k=1 Ak(q) ∈ S(Am(G,q),Pa,Pa) for somem = p. From Remark1,

we can see thatBp+1(q) = BP(q)Ap+1(q) is partitioned according to(Pa,Pa) and the sub-matrices

[Bp+1(q)]i j = ∑n
k=1[Bp(q)]ik[Ap+1(q)]k j. We see that

[Ap+1(q)]k j =































Hkk(q) if k = j ,

qW((vj ,vk))−1Hk j(q) if (v j ,vk) ∈ E ,

0 otherwise

(7.16)

[Bp(q)]ik :=















































Rii (q) if i = k,

qW(πik)−l(πik) Rik(q) if πik is a directed path from vertexvk to vi

of length at mostp and with smallest weight

0 otherwise

(7.17)

where{Hk j(q)}k j and{Rik(q)}ik are matrices with elements as polynomials inq, for all i, j andk.

If there is no path from vertexv j to vertexvi of length at mostp+ 1, then for allvk ∈ V, either

there is no path fromvk to vi of length at mostp or there is no directed edge fromv j to vk. Thus, either

[Bp(q)]ik or [Ap+1(q)]k j are zero-matrices for allk when[Ap+1(G,q)]i j = 0. Thus,[Bp+1(q)]i j is a zero

matrix when[Ap+1(G,q)]i j = 0.
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Looking at all the paths from vertexv j to vi , we can also note that

[Bp+1(q)]i j :=















































Tii (q) if i = j,

qW(πi j )−l(πi j ) Ti j (q) if πi j is a directed path from vertexv j to vi

of length at mostp+1 and with smallest weight

0 otherwise

(7.18)

for someTi j (q), which implies thatBp+1 ∈ S(Ap+1(G,q),Pa,Pa).

Thus, the given statement is true by mathematical induction.

Using the delay shift operatorq and Definition8, we can write the dynamics of the networked

system in (7.3) using a concise form

P :







x(k+1)

y(k)






=







A(q) Bu

Cy(q) Dyu













x(k)

u(k)






(7.19)

where

[A(q)]i j =































Aii if i = j

qti j Ai j if (v j ,vi) ∈ E

0 otherwise

, [Cy(q)]i j =































Cy
ii if i = j

qti j Cy
i j if (v j ,vi) ∈ E

0 otherwise

,

Bu = diag[Bu
i ]i , Dyu = diag[Dyu

i ]i

(7.20)

andti j is given by (7.1). ThusA(q) ∈ S(A(G,q),Px,Px), Bu ∈ S(I ,Px,Pu), Cy(q) ∈ S(A(G,q),Py,Px)

andDyu ∈ S(I ,Py,Pu).

Using the notation introduced in this section to describe networked systems over delay networks, we

can extend almost all the definitions and results for strictly causal interactions over zero-delay networks

to strictly causal interactions over delay networks.

7.1 Structured systems

In Chapter3, we saw that networked systems that are strictly causal interactions over a zero-delay

network can be described using structured systems over a unit-weight digraph. In this section, we extend
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the results and show that networked systems that are strictly causal interactions over a delay network

can be described using structured systems over a weighted digraph.

Definition 9. Given a weighted digraphG = (V,E) with n vertices and the n−tuplesPu andPy; let

An−1(G) be the unique binary matrix given by(2.2) and Wi j be defined for all i, j according to(7.2).

We defineT(G,Py,Pu) as the set of transfer function matrices P(z) ∈ S(An−1(G),Py,Pu) such that the

transfer function sub-matrices Pi j (z) ∈R
Py(i)×Pu( j)
p (where P(z) = [Pi j (z)]i, j ) are such that

delay(Pi j (z)) ≥Wi j if Wi j <∞

Pi j (z) = 0 if Wi j = ∞

(7.21)

for all i, j.

Lemma 15. Given a weighted digraphG = (V,E) and n−tuplesPx, Pu, Py, Pη andPζ , let P be a

networked system with sub-system dynamics given by(3.5) interacting over network interconnection

(3.6) where x(k) = vert[xi(k)]i , u(k) = vert[ui(k)]i , y(k) = vert[yi(k)]i , η(k) = vert[ηri (k)]i,r∈N+
i

and

ζ (k) = vert[ζi j (k)]i, j∈N−

i
are partitioned according toPx, Pu, Py, Pη and Pζ , respectively. Then

tf P∈ T(G,Py,Pu).

Proof. Based on the hypothesis, we can see that the dynamics ofP can be written using (7.19) where

A(q), Bu, Cy(q) andDyu are given by (7.20). Note thatA(q) ∈ S(A(G,q),Px,Px), Bu ∈ S(I ,Px,Pu),

Cy(q) ∈ S(A(G,q),Py,Px) andDyu ∈ S(I ,Py,Pu).

Let P(z) be the transfer function ofP. Using the fact that the transfer function of delay shift operator

q is z−1 and from (2.9), we get

P(z) = Dyu+
∞

∑
k=0

Cy(z
−1)(A(z−1))kBuz−k−1. (7.22)

DefineR0(z) := Dyu andRk+1(z) := Cy(z−1)(A(z−1))kBu for all k ∈ N0. From Lemmas2 and14, and

(7.20), we see that

(A(z−1))k ∈ S(Ak(G,z
−1),Px,Px)

⇒ Cy(z
−1)(A(z−1))k ∈ S(Ak+1(G,z

−1),Py,Px)

⇒ Cy(z
−1)AkBu ∈ S(Ak+1(G,z

−1),Py,Pu)

⇒ Rk(z) ∈ S(Ak(G,z
−1),Py,Pu) ∀ k∈ N0.
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Note thatA0(G,z−1) = I . From (7.22) and definitions of{Rk(z)}k, we can write

P(z) =
∞

∑
k=0

Rk(z)z
−k. (7.23)

Following the proof of Lemma4, it is easy to see thatP(z) ∈ S(An−1(G),Py,Pu). SinceP(z) is

partitioned according to(Py,Pu) we can writeP(z) = [Pi j (z)]i, j , wherePi j (z) is the transfer function

sub-matrix mapping input vectoru j(k) to output vectoryi(k). From (7.23), we get

Pi j (z) =
∞

∑
k=0

[Rk(z)]i j z
−k. (7.24)

where[Rk(z)]i j is the sub-matrix ofRk(z), for all k. From (7.24), (7.15) and (7.1); the delay ofPi j (z) is

given by

delay(Pi j (z)) = inf{m∈ N0 : lim
z→∞

zmPi j (z) 6= 0}

= inf{m∈ N0 : lim
z→∞

zm
∞

∑
k=0

[Rk(z)]i j z
−k 6= 0}

≥ inf{m∈ N0 : lim
z→∞

zm
∞

∑
k=0

[Ak(G,z
−1)]i j z

−k 6= 0}

= inf{m∈ N0 : lim
z→∞

zm
∞

∑
k=l(π)

z(l(π)−W(π))z−k 6= 0, π is a path fromv j to vi}

= inf{W(π) : π is a path fromv j to vi} = Wi j

(7.25)

which implies thatP(z) ∈ T(G,Py,Pu).

Theorem 6. Given a weighted digraphG = (V,E) and n−tuplesPu andPy.

1. Let P(z) be a transfer function matrix inT(G,Py,Pu) with input vector u(k) and output vector

y(k) partitioned according toPu andPy, respectively. Then there exists a networked systemP̃

with sub-system dynamics given by(3.5) interacting over a network interconnection(3.6) such

that tf (P̃) = P(z).

2. If P(z) is also BIBO stable, then there exists a stable networked systemP̃ which is a strictly causal

interaction overG such thattf (P̃) = P(z).

Proof. The proof of this Theorem is very similar to that of the proof of Theorem1.

A weighted digraphG = (V,E) and transfer function matrixP(z) ∈T(G,Py,Pu) are given. So,P(z)

is partitioned according to(Py,Pu) and is of the formP(z) = [Pi j (z)]i, j . Note thatPi j (z) is essentially the
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transfer function matrix mappingu j(k) to yi(k), where inputu(k) = vert[ur(k)]r andy(k) = vert[yr(k)]r

are partitioned according toPu andPy, respectively.

From (7.21), we see thatPi j (z) = 0 if there is no directed path fromv j to vi over the digraphG and

delay(Pi j (z)) ≥ Wi j (whereWi j is the weight of minimum weight path fromv j to vi given by (7.2)),

otherwise. The condition thatPi j (z) ∈R
Py(i)×Pu( j)
p anddelay(Pi j (z)) ≥Wi j can equivalently be written

asPi j (z) = z−Wi j Hi j (z) (with possible pole-zero cancellations at origin) whereHi j (z) ∈ R
Py(i)×Pu( j)
p .

Thus (7.21) can be written as

Pi j (z) =















z−Wi j Hi j (z) if Wi j <∞

0 otherwise

(7.26)

whereHi j (z) ∈R
Py(i)×Pu( j)
p for all i, j.

Wheni 6= j, let a minimum-weight path from vertexv j to vertexvi be given by

πi j = πi j (0)πi j (1) . . .πi j (mi j ),

whereπi j (0) = v j and πi j (mi j ) = vi , i.e. mi j is the length of the minimum-weight path. Note that

a minimum-weight path need not have the shortest-length, i.e. mi j ≥ l i j . We refer toπi j (p), for

p ∈ {1, . . . ,mi j − 1}, as intermediate vertices. LetWi j (p) denote the weight of the directed edge

(πi j (p),πi j (p+1)) for p∈ {0, . . . ,mi j −1}. Thus,Wi j =
mi j−1

∑
p=0

Wi j (p). We also denote the delay corre-

sponding to the network link fromπi j (p) to πi j (p+1) by ti j (p), for p∈ {0, . . . ,mi j −1}. By (7.1), we

get thatti j (p) = Wi j (p)−1 for all p.

Consider minimal realizations ofPi j (z) in the following cases and define local states corresponding

to a vertex as shown below.

• Wheni = j, define local statesxii (k) at vertexvi such that

Pii (z) :
xii (k+1) = Aii xii (k)+Bii ui(k)

yii (k) = Cii xii (k)+Dii ui(k)
(7.27)

• Whenmi j = 1, define statesxi j (k) at vertexv j

z−1Hi j (z) :
xi j (k+1) = Ai j xi j (k)+Bi j u j(k)

yi j (k) = Ci j xi j (k)
(7.28)
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• Whenmi j ≥ 2, we define states at each vertex on the pathπi j as follows

z−1Hi j (z) :
x(0)

i j (k+1) = Ai j x
(0)
i j (k)+Bi j u j(k)

y(0)
i j (k) = Ci j x

(0)
i j (k)

(7.29)

Note that statesx(0)
i j (k) are defined at vertexv j and the outputsy(0)

i j (k) are passed to vertexπi j (1),

i.e. the first vertex in the selected path fromv j to vi . At verticesπi j (p), for p∈ {1, . . . ,mi j −1},

we define statesx(p)
i j (k) corresponding to unit delay systems

z−1 :
x(p)

i j (k+1) = y(p−1)
i j (k− ti j (p−1))

y(p)
i j (k) = x(p)

i j (k).
(7.30)

Note that the message received by nodeπi j (p) in the communication path from nodev j tovi isy(p−1)
i j (k−

ti j (p− 1)). This is due to the delay over the communication link fromπi j (p− 1) to πi j (p), for all

p∈ {1, . . . ,mi j }.

We denote the state vector corresponding to each vertexvi to bex̃i(k), which is formed by appending

the statesxii (k), x ji (k) ∀ j ∈ N+
i andx(p)

ab (k) wheneverπab(p) = vi (for p∈ {0, . . . ,mab−1}), i.e. when

vertex vi is a vertex on the minimum-weight path from some vertexvb to some other vertexva. A

network output vector̃ηri(k), for all r ∈ N+
i , is formed by appendingyri (k) and y(p)

ab (k) whenever

πab(p) = vi andπab(p+1) = vr (for p∈ {0, . . . ,mab−1}). Similarly, a network input vector̃ζi j (k), for

all j ∈N−
i , is formed by appendingyi j (k− ti j ) andy(p)

ab (k− ti j ) wheneverπab(p) = v j andπab(p+1) =

vi (for p∈ {0, . . . ,mab−1}). Note that network inputs{ζ̃i j (k)}i, j and network outputs{η̃ri (k)}r,i satisfy

the network interconnection equations

ζ̃i j (k) = η̃i j (k− ti j ) ∀ j ∈ N−
i . (7.31)

At vertexvi , the outputyi(k) is given by

yi(k) = yii (k)+ ∑
j : mi j =1

yi j (k− ti j )+ ∑
j : mi j≥2

y
(mi j−1)
i j (k− ti j (mi j −1)) (7.32)

Thus, we can definen sub-systems,{P̃i}i , each with local states ˜xi(k), local inputsui(k), local outputs

yi(k), network inputsζ̃i j (k) (for all j ∈N−
i ) and network outputs̃ηir (k) (for all r ∈N+

i ). Following the

state-space equations (7.27), (7.28), (7.29), (7.30), (7.32) concerning these states, inputs and outputs
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at each node, we can see that ˜xi(k+1) andyi(k) are linear functions of ˜xi(k), ui(k) and{ζ̃i j (k)} j∈N−

i
;

while η̃ri (k) is only a function of ˜xi(k) (for all r ∈ N+
i ). Thus, then sub-systems{P̃i}i satisfy the

structure given in (3.5) while the network inputs and network outputs satisfy (7.31). Thus the transfer

function matrixP(z) is expressed as a networked systemP̃ which is a strictly causal interaction of

sub-systems{P̃i}i over a delay network represented by the given weighted digraphG.

In the second case whenP(z) is also a BIBO stable transfer function, we show that the construction

procedure used in the previous part of the proof also assuresasymptotic stability ofP̃.

In order to check asymptotic stability of̃P, we consider the zero-input autonomous system by as-

sumingui(k) = 0 ∀i,k. First, we shall separate the states defined in (3.18), (3.19), (3.20) and (3.21)into

two categories. The first category consists of the states corresponding to the transfer function matrices

Pi j (z) (∀i, j such thatmi j ≤ 1) that were defined in (3.18) and (3.19). This set of states can be written as

X1(k) = vert[xi j (k)]i, j : mi j≤1. From the state-space equations corresponding to these states, we get

X1(k+1) = diag[Ai j ]i, j : mi j≤1X1(k) (7.33)

whenui(k) = 0 for all i,k.

The second category consists of the states corresponding toall thePi j (z) whenmi j ≥ 2. For example,

assume that a shortest pathπi j from vertexv j to vertexvi has length greater than 1. Then

πi j = πi j (0) πi j (1) . . . πi j (mi j )

wheremi j ≥ 2, πi j (0) = v j andπi j (mi j ) = vi . Corresponding to this path, the states earlier defined in

(7.29) and (7.30) arex(0)
i j (k), x(1)

i j (k), . . . , x
(mi j−1)
i j (k). Let us define

Xi j (k) = vert[x(p)
i j (k)]p∈{0,...,mi j−1}

corresponding to the pathπi j . From the state-space equations corresponding to these states, we can see

that

Xi j (k+1) =

































Ai j

qti j (0)Ci j 0

qti j (1) I 0

qti j (2) I 0

... .. .

qti j (mi j−2) I 0

































Xi j (k). (7.34)
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DefineX2(k) = vert[Xi j (k)]{i, j:2≤mi j<n} as the set of states corresponding toPi j (z) whenmi j ≥ 2. Note

that X1(k) andX2(k) constitute all the states defined corresponding to then sub-systems{P̃i}i . From

(7.33) and (7.34), we can see that theA−matrix corresponding to the dynamics of
[

X1(k)
X2(k)

]

is block lower

triangular with{Ai j}i, j on the diagonal and the rest of the diagonal terms being zero.

By hypothesis,P(z) is BIBO stable which implies that{Pi j (z)}i, j are all BIBO stable, which in turn

implies that{Hi j (z)}i, j are all BIBO stable. Note that, we assumed minimal realizations ofPi j (z) and

Hi j (z) in (3.18), (3.19) and (3.20) which implies that the matrices{Ai j }i, j are all Schur-stable. Thus, we

can see that theA−matrix of the networked realizatioñP is also Schur-stable based on Lemma13.

From Lemma15and Theorem6, we can see that given a weighted digraphG, any networked system

that is a strictly causal interaction overG has a structured transfer function matrix that has sparsity

and delay structures corresponding toG and vice versa. This is true when there are no additional

conditions imposed on the systems. If the systems are constrained to be stabilizable and detectable,

we notice that Theorem6 cannot be extended for any general unstable structured transfer function

matrix in T(G,Py,Pu). Due to this network realizability problem, unstable networked systems (that

are stabilizable and detectable) cannot be represented using structured transfer function matrices in

T(G,Py,Pu).

7.2 Networked plant model

A networked plantP is modeled as a strictly causal interaction of sub-systems (as in (4.1)) over a

given weighted digraphG, with each sub-system including local exogenous input vector wi(k) and local

regulated output vectorzi(k). The state-space description of the sub-systems{Pi}i are given by

Pi :

xi(k+1) = Aii xi(k)+Bw
i wi(k)+Bu

i ui(k)+ ∑
j∈N−

i

Bζ
i j ζi j (k)

zi(k) = Cz
ii xi(k)+Dzw

i wi(k)+Dzu
i ui(k)+ ∑

j∈N−

i

Dzζ
i j ζi j (k)

yi(k) = Cy
ii xi(k)+Dyw

i wi(k)+ ∑
j∈N−

i

Dyζ
i j ζi j (k)

ηri (k) = Cη
ri xi(k) ∀ r ∈N+

i

∀ i ∈ {1, . . . ,n} (7.35)



www.manaraa.com

72

wherexi(k) denotes the local state vector,wi(k) local exogenous input vector,zi(k) local regulated

output vector,ui(k) local control input vector,yi(k) the local measurement output vector,ηri(k) (for all

r ∈N+
i ) the local network outputs andζi j (k) (for all j ∈N−

i ) the local network inputs corresponding to

a sub-systemPi. The discrete-time network interaction equations corresponding to the weighted digraph

G are given by

ζi j (k) = ηi j (k− ti j ) ∀ (v j ,vi) ∈ E (7.36)

whereti j denotes the network delay according to (7.1).

Combining (7.35) and (7.36), the network inputs and outputs can be eliminated to give the state-

space equations for the sub-systems as

xi(k+1) = Aii xi(k)+Bw
i wi(k)+Bu

i ui(k)+ ∑
j∈N−

i

Ai j x j(k− ti j ),

zi(k) = Cz
ii xi(k)+Dzw

i wi(k)+Dzu
i ui(k)+ ∑

j∈N−

i

Cz
i j x j(k− ti j )

yi(k) = Cy
ii xi(k)+Dyw

i wi(k)+ ∑
j∈N−

i

Cy
i j x j(k− ti j ),

∀ i ∈ {1, . . . ,n} (7.37)

whereAi j := Bζ
i jC

η
i j , Cz

i j := Dzζ
i j Cη

i j andCy
i j := Dyζ

i j Cη
i j . Using the delay shift operatorq, the state-space

equations in (7.37) can also be concisely written as

P :













x(k+1)

z(k)

y(k)













=













A(q) Bw Bu

Cz(q) Dzw Dzu

Cy(q) Dyw 0

























x(k)

w(k)

u(k)













(7.38)

whereA(q), Bu andCy are given by (7.20) while

[Cz(q)]i j =































Cz
ii if i = j

qti j Cz
i j if (v j ,vi) ∈ E

0 otherwise

Bw = diag[Bw
i ]i , Dzw = diag[Dzw

i ]i , Dzu = diag[Dzu
i ]i, Dyw = diag[Dyw

i ]i.

(7.39)

Note thatx(k) := vert[xi(k)]i , w(k) := vert[wi(k)]i , u(k) := vert[ui(k)]i , z(k) := vert[zi(k)]i andy(k) :=

vert[yi(k)]i denote the complete state, exogenous input, control input,regulated output and measure-

ment output vectors corresponding to the networked systemP and be partitioned according toPx, Pw,
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Pu, Pz andPy, respectively. From (7.37), and the partitions ofx(k), w(k), u(k), z(k) andy(k), we can

see that

A(q) ∈ S(A(G,q),Px,Px), Bw ∈ S(I ,Px,Pw), Bu ∈ S(I ,Px,Pu),

Cz(q) ∈ S(A(G,q),Pz,Px), Dzw∈ S(I ,Pz,Pw), Dzu∈ S(I ,Pz,Pu),

Cy(q) ∈ S(A(G,q),Py,Px), Dyw ∈ S(I ,Py,Pw).

(7.40)

7.3 All internally stabilizing networked controllers

In this section, we extend the parameterization described in Theorem2 to the case when stabiliz-

ing controllers are constrained to be networked systems that are strictly causal interactions over delay

networks. In this case, the plantP is also a strictly causal interaction over the given delay network.

In order to parameterize internally stabilizing networkedcontrollers, first a model based controllerJ is

chosen to be a networked system based on appropriateF(q) andL. Then Theorem7 shows that choos-

ing the Youla parameterQ to be a stable networked system will parameterize the stabilizing networked

controllers for the given networked plant.

Theorem 7. Given a weighted digraphG and a stabilizable and detectable networked plant P that

is a strictly causal interaction overG with the sub-system dynamics given by(7.35) and the network

interaction given by(7.36). Let the state-space representation for P be given by(7.38) with state-

space matrices structured and partitioned according to(7.20) and (7.39). Given there exist matrices

F(q) ∈ S(A(G,q),Pu,Px) and L= diag[Li ]i ∈ S(I ,Px,Py) such that(zI−A(z−1)−BuF(z−1)) and

(zI−A(z−1)− LCy(z−1)) have full-rank for any z∈ C\D̄. Then the set of all internally stabilizing

FDLTI controllers for P, which are also strictly causal interactions overG, is parametrized by

K = lft (J,Q), (7.41)

where J is a strictly causal interaction overG with a state-space representation

J :













xJ(k+1)

u(k)

ξ (k)













=













A(q)+BuF(q)+LCy(q) −L Bu

F(q) 0 I

−Cy(q) I 0

























xJ(k)

y(k)

ψ(k)













(7.42)
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and any asymptotically stable networked system Q with it’s transfer function matrix inT(G,Pu,Py).

Note that the vectors xJ(k) := vert[xJ
i (k)]i , ξ (k) := vert[ξi(k)]i andψ(k) := vert[ψi(k)]i are partitioned

according toPx, Py andPu, respectively.

Proof. First, we show thatJ given in (7.42) is in fact a observer-based nominal stabilizing controller for

the networked plantP in (7.38). Using the sub-matrices ofA(q), Bu,Cy(q), F(q) andL from hypothesis;

(7.42) can be written as

xJ
i (k+1) = ∑

j∈N−

i ∪{i}

(Ai j +Bu
i Fi j +LiC

y
i j )x

J
j (k− ti j )−Liyi(k)+Bu

i ψi(k),

ui(k) = ∑
j∈N−

i ∪{i}

Fi j x
J
j (k− ti j )+ ψi(k),

ξi(k) = ∑
j∈N−

i ∪{i}

(−Cy
i j )x

J
j (k− ti j )+yi(k).

(7.43)

wheretii = 0 (for all i) andti j is given by (7.1) (for all j ∈ N−
i ). Combining (7.38) and (7.43), we can

eliminate the variables{ui(k)}i and{yi(k)}i to get the dynamics ofT := lft (P,J) as

xT
i (k+1) = ∑

j∈N−

i ∪{i}

AT
i j x

T
j (k− ti j )+BT

i

[

wi(k)ψi(k)

]

[

zi(k)ξi(k)

]

= ∑
j∈N−

i ∪{i}

CT
i j x

T
j (k− ti j )+DT

i

[

wi(k)ψi(k)

] ∀i ∈ {1, . . . ,n} (7.44)

wherexT
i (k) =

[

xi (k)
xi (k)−xJ

i (k)

]

and

AT
i j :=







Ai j +Bu
i Fi j −Bu

i Fi j

0 Ai j +LiC
y
i j






, BT

i :=







Bw
i Bu

i

Bw
i +LiD

yw
i 0






,

CT
i j :=







Cz
i j +Dzu

i Fi j −Dzu
i Fi j

0 Cy
i j






, DT

i :=







Dzw
i Dzu

i

Dyw
i 0






.

(7.45)

Based on hypothesis that(zI−A(z−1)−BuF(z−1)) and(zI−A(z−1)−LCy(z−1)) have full rank for any

z∈ C\D̄, we notice that the networked systemT in (7.44) is asymptotically stable based on Lemma13.

ThusJ is a stabilizing controller ofP. From (7.45), we can also see that the transfer function matrix

from ψi(k) to ξi(k) (for any i and j) is a zero matrix.
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First, assume thatQ is an asymptotically stable networked system with it’s transfer function in

T(G,Pu,Py). Thus,Q has dynamics of the form

xQ
i (k+1) = AQ

ii xQ
i (k)+BQ

i ξi(k)+ ∑
j∈N−

i

AQ
i j x

Q
j (k− ti j )

ψi(k) = CQ
ii xQ

i (k)+DQ
i ξi(k)+ ∑

j∈N−

i

CQ
i j x

Q
j (k− ti j ).

∀i ∈ {1, . . . ,n} (7.46)

Since the transfer function fromψ(k) to ξ (k) is zero andQ is asymptotically stable, the closed-loop

transfer functionlft (T,Q) is always stable. Using the standard Youla-Kučera parameterization argu-

ments, we can see that the controller given byK = lft (J,Q) internally stabilizes the given plantP in

(7.38) whenJ is given by (7.42) andQ is an asymptotically stable system. Next, we show that thereex-

ists a strictly causal interaction overG which has the same state-space representation aslft (J,Q) when

Q is a strictly causal interaction overG.

Combining equations in (7.43) and (7.46), we eliminate the variables{ξi(k)}i and{ψi(k)}i to write

the state-space equations corresponding toK = lft (J,Q) as

xK
i (k+1) = ∑

j∈N−

i ∪{i}

AK
i j x

K
j (k− ti j )+BK

i yi(k)

ui(k) = ∑
j∈N−

i ∪{i}

CK
i j x

K
j (k− ti j )+DK

i yi(k)
∀i ∈ {1, . . . ,n} (7.47)

wherexK
i (k) =

[

xJ
i (k)

xQ
i (k)

]

and

AK
i j :=







Ai j +Bu
i Fi j +LiC

y
i j −Bu

i D
Q
i Cy

i j Bu
i C

Q
i j

−BQ
i Cy

i j AQ
i j






, BK

i :=







−Li +Bu
i DQ

i

BQ
i






,

CK
i j :=

[

Fi j −DQ
i Cy

i j CQ
i j

]

, DK
i := DQ

i .

Extending the results of Lemma5 to networked systems over delay networks, we can see that (7.47) is

equivalent to a strictly causal interaction overG with the same state-space matrices as in (7.47).

On the other hand, given matricesF(q) andL such that(zI−A(z−1)−BuF(z−1)) and(zI−A(z−1)−

LCy(z−1)) have full rank for anyz∈ C\D̄, standard results on Youla parameterization show that any

internally stabilizing controller for the plantP is given byK = lft (J,Q) whereJ is given by (7.42) and

a stable, causal, FDLTI systemQ. Now, assume thatK is a strictly causal interaction overG, which
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implies thatK has a state-space realization of the form (7.47). Then, it is easy to see thatK internally

stabilizesĴ given by

Ĵ :













xĴ(k+1)

ψ(k)

y(k)













=













A(q) −L Bu

−F(q) 0 I

Cy(q) I 0

























xĴ(k)

ξ (k)

u(k)













(7.48)

wherexĴ(k) is partitioned according toPx. Following a similar procedure as before, we see thatQ =

lft (Ĵ,K) is a stable strictly causal interaction overG wheneverK is an internally stabilizing networked

controller forP.

Theorem7 requires matricesF(q) ∈ S(A(G,q),Pu,Px) andL = diag[Li]i ∈ S(I ,Px,Py) such that

(zI−A(z−1)−BuF(z−1)) and(zI−A(z−1)−LCy(z−1)) have full-rank for anyz∈C\D̄. These matrices

can be obtained using Lemma7 and Lemma8. We describe the procedure through a simple example.

7.3.1 Example

Consider a networked systemP over a delay network as shown in Fig.3.1, with dynamics described

by (7.3) as













x1(k+1)

x2(k+1)

x3(k+1)













=













A11 qA12 0

A21 A22 0

0 A32 A33

























x1(k)

x2(k)

x3(k)













+













Bu
1 0 0

0 Bu
2 0

0 0 Bu
3

























u1(k)

u2(k)

u3(k)

























y1(k)

y2(k)

y3(k)













=













C11 qC12 0

C21 C22 0

0 C32 C33

























x1(k)

x2(k)

x3(k)













+













Dyu
1 0 0

0 Dyu
2 0

0 0 Dyu
3

























u1(k)

u2(k)

u3(k)













.

(7.49)

In order to find appropriateF(q)∈S(A(G,q),Pu,Px) andL = diag[Li]i ∈S(I ,Px,Py), we first write

the dynamics ofP in (7.49) using a network state vectorx4(k) := x2(k) as

x̄(k+1) = Āx̄(k)+ B̄uu(k)

y(k) = C̄yx̄(k)+Dyuu(k)
(7.50)
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where

x̄(k) :=



















x1(k)

x2(k)

x3(k)

x4(k)



















, Ā :=



















A11 0 0 A12

A21 A22 0 0

0 A32 A33 0

0 I 0 0



















,

B̄u :=



















Bu
1 0 0

0 Bu
2 0

0 0 Bu
3

0 0 0



















, C̄y :=













C11 0 0 C12

C21 C22 0 0

0 C32 C33 0













.

(7.51)

Now, use Lemma7 to obtain

F̄ =













F11 0 0 F12

F21 F22 0 0

0 F32 F33 0













(7.52)

such thatĀ+ B̄uF̄ is asymptotically stable. This can be obtained by imposing appropriate sparsity

constraints onG andR in (4.13). Following the structure of̄F in (7.52), it is easy to obtain the required

F(q) ∈ S(A(G,q),Pu,Px) from F̄ as

F(q) =













F11 qF12 0

F21 F22 0

0 F32 F33













. (7.53)

Lemma13 assures that(zI−A(z−1)−BuF(z−1)) has full rank for allz∈ C\D̄ whenF(q) is obtained

from F̄ such thatĀ+ B̄uF̄ is asymptotically stable.

Similarly, use Lemma8 to obtain

L̄ =



















L1 0 0

0 L2 0

0 0 L3

0 0 0



















(7.54)

such thatĀ+ L̄C̄y is asymptotically stable. This again can be obtained by imposing appropriate sparsity

constraints onG andR in (4.14). Following the structure of̄L in (7.54), it is easy to obtain the required
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L ∈ S(I ,Px,Py) from L̄ as

L =













L1 0 0

0 L2 0

0 0 L3













. (7.55)

Lemma13assures that(zI−A(z−1)−LCy(z−1)) has full rank for allz∈ C\D̄ whenL is obtained from

L̄ such thatĀ+ L̄C̄y is asymptotically stable.

7.4 Optimal solution for networked controller design problem

Let G denote the weighted digraph representing a general delay network interaction. Given a net-

worked plantP with sub-system dynamics following (7.35) that are interacting over a network specified

by (7.36). Following the discussion in Section4.3, the norm-minimizing network control problems

where the controller is constrained to be a strictly causal interaction over the givenG can be written as

min ‖Tzw‖α

subject to K is a strictly causal interaction overG,

Tzw is asymptotically stable

(7.56)

whereTzw = lft (P,K) denotes the closed-loop mapping fromw(k) to z(k), andα = 2 or∞. Based on

Theorem7, the set of internally stabilizing networked controllers that are strictly causal interactions

overG are parameterized asK = lft (J,Q) whereJ is given by (7.42) andQ is a stable networked system

overG with tf (Q)∈Ts(G,Pu,Py). If there exist matricesF(q) andL such that(zI−A(z−1)−BuF(z−1))

and(zI−A(z−1)− LCy(z−1)) have full rank for anyz∈ C\D̄, then the set of all closed-loop transfer

function matrices fromw(k) to z(k) for an internally stabilizing networked controller (whichis a strictly

causal interaction overG) can be given by

Czw := {T11(z)+T12(z)Q(z)T21(z) : Q(z) = tf (Q), Q∈ S
s(G,Pu,Py)} (7.57)

where






T11(z) T12(z)

T21(z) T22(z)






:=







Dzw Dzu

Dyw 0






+

∞

∑
k=0







Cz(z−1)+DzuF(z−1) −DzuF(z−1)

0 Cy(z−1)






·







A(z−1)+BuF(z−1) −BuF(z−1)

0 A(z−1)+LCy(z−1)







k





Bw Bu

Bw+LDyw 0






z−k−1

(7.58)
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From (7.58), it is easy to note thatT22(z) = 0. The norm-minimization networked control problem in

(7.56) can be written as

min ‖Tzw‖α

subject to Tzw∈ Czw

for α = 2 or∞ (7.59)

whereCzw is given by (7.57) which can equivalently by written as

min ‖T11(z)+T12(z)Q(z)T21(z)‖α

subject to Q(z) ∈ T
s(G,Pu,Py)

for α = 2 or∞. (7.60)

This problem is exactly the same as (4.20) and the vectorization idea used in Section4.3can be used to

write theH2 networked control problem as an unconstrainedH2 problem

min
∥

∥vec(T11(z))+ (T21(z)
′⊗T12(z))S(z)H(z)

∥

∥

2

subject to H(z) ∈RHa×1
∞ ,

(7.61)

whereS(z) andH(z) are given by (4.22). The unconstrained convex optimization problem in (7.61)

can be solved using standard techniques. LetH⋆(z) denote the solution of the optimization problem

(7.61). Then the corresponding optimalQ⋆(z) is given byQ⋆(z) = vec−1(S(z)H⋆(z)) ∈ Ts(G,Pu,Py).

Following the proof of Theorem7, the corresponding internally stabilizing controllerK⋆ is obtained

based onJ given by (7.42) andQ⋆(z). From Theorem7 and the problem formulation in (7.56), we

can see thatK⋆ thus designed is the optimal internally stabilizing networked controller that is a strictly

causal interaction overG for the given networked plantP.
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CHAPTER 8. Numerical examples

8.1 Example for Theorem1

Let a unit-weight digraphG = (V,E) be given (as shown in Fig.3.2(b)), whereV = {v1,v2,v3} and

E = {(v1,v2),(v2,v1),(v2,v3)}. LetPu = (1,1,1) andPy = (1,1,1). Let the transfer function matrix of

a stable structured system overG be given by

P(z) =













z+1
z−0.5

0.5
z−0.8 0

−0.1
z−0.5

z+0.1
z−0.1 0

1
(z−0.1)(z−0.8)

0.3
z−0.8

z−0.2
z−0.5













. (8.1)

Note that (8.1) satisfies the delay and sparsity constraints (3.11) corresponding to the digraphG. Thus

P(z) ∈ Ts(G,Py,Pu). Following the notation from Theorem1, we write the minimal state-space real-

izations

P11(z) =
z+1

z−0.5
→







x11(k+1)

y11(k)






=







0.5 1

1.5 1













x11(k)

u1(k)






,

P12(z) =
0.5

z−0.8
→







x12(k+1)

y12(k)






=







0.8 0.5

1 0













x12(k)

u2(k)






,

P21(z) =
−0.1

z−0.5
→







x21(k+1)

y21(k)






=







0.5 0.25

−0.4 0













x21(k)

u1(k)






,

P22(z) =
z+0.1
z−0.1

→







x22(k+1)

y22(k)






=







0.1 0.5

0.4 1













x22(k)

u2(k)






,

z−1H31(z) = zP31(z) =
z

(z−0.1)(z−0.8)
→







x(0)
31 (k+1)

y(0)
31 (k)






=













0.9 −0.32 1

0.25 0 0

1 0 0



















x(0)
31 (k)

u1(k)






,



www.manaraa.com

81

z−1 →







x(1)
31 (k+1)

y(1)
31 (k)






=







0 1

1 0













x(1)
31 (k)

y(0)
31 (k)






,

P32(z) =
0.3

z−0.8
→







x32(k+1)

y32(k)






=







0.8 0.5

0.6 0













x32(k)

u2(k)






,

P33(z) =
z−0.2
z−0.5

→







x33(k+1)

y33(k)






=







0.5 0.5

0.6 1













x33(k)

u3(k)






.

In the graphG, the shortest path (with length 2) from vertexv1 to vertexv3 is given byv1 → v2 → v3

and the corresponding states are defined byx(0)
31 (k) andx(1)

31 (k). Thus the pathπ31 = v1 v2 v3 andl31 = 2.

Following the proof of Theorem1, we define state vectors corresponding to each node to be

x̃1(k) =













x11(k)

x21(k)

x(0)
31 (k)













, x̃2(k) =



















x12(k)

x22(k)

x32(k)

x(1)
31 (k)



















, x̃3(k) = x33(k).

The outgoing messages from each node are given by

η̃21(k) =







y21(k)

y(0)
31 (k)






, η̃12(k) =

[

y12(k)

]

, η̃32(k) =







y32(k)

y(1)
31 (k)






,

and the outputs at each node are given by

y1(k) = y11(k)+y12(k),

y2(k) = y21(k)+y22(k),

y3(k) = y(1)
31 (k)+y32(k)+y33(k).

Since the network represented byG is noiseless and has zero-delay, the incoming message vectors at

each vertex are given by

ζ̃12(k) = η̃12(k), ζ̃21(k) = η̃21(k), ζ̃32(k) = η̃32(k). (8.2)
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Using the state-space matrices ofPi j (z), the dynamics at each vertexvi are defined as a sub-system

P̃i given by

P̃1 :













x̃1(k+1)

y1(k)

η̃21(k)













=









































0.5 0 0 0 1 0

0 0.5 0 0 0.25 0

0 0 0.9 −0.32 1 0

0 0 0.25 0 0 0

1.5 0 0 0 1 1

0 −0.4 0 0 0 0

0 0 1 0 0 0





















































x̃1(k)

u1(k)

ζ̃12(k)













,

P̃2 :





















x̃2(k+1)

y2(k)

η̃12(k)

η̃32(k)





















=















































0.8 0 0 0 0.5 0 0

0 0.1 0 0 0.5 0 0

0 0 0.8 0 0.5 0 0

0 0 0 0 0 0 1

0 0.4 0 0 1 1 0

1 0 0 0 0 0 0

0 0 0.6 0 0 0 0

0 0 0 1 0 0 0



























































x̃2(k)

u2(k)

ζ̃21(k)













,

P̃3 :







x̃3(k+1)

y3(k)






=







0.5 0.5 0 0

0.6 1 1 1



















x̃3(k)

u3(k)

ζ̃32(k)













.

(8.3)

The sub-systems{P̃i}i in (8.3) interacting over the network interconnection (8.2) describes the net-

worked systemP̃ corresponding toP(z). Combining the equations in (8.3) and (8.2), we get the state-
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space representation forP̃ as(A,Bu,Cy,Dyu) where

A =























































0.5 0 0 0 0 0 0 0 0

0 0.5 0 0 0 0 0 0 0

0 0 0.9 −0.32 0 0 0 0 0

0 0 0.25 0 0 0 0 0 0

0 0 0 0 0.8 0 0 0 0

0 0 0 0 0 0.1 0 0 0

0 0 0 0 0 0 0.8 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.5























































, Bu =























































1 0 0

0.25 0 0

1 0 0

0 0 0

0 0.5 0

0 0.5 0

0 0.5 0

0 0 0

0 0 0.5























































Cy =













1.5 0 0 0 1 0 0 0 0

0 −0.4 0 0 0 0.4 0 0 0

0 0 0 0 0 0 0.6 1 0.6













, Dyu =













1 0 0

0 1 0

0 0 1













when the state, input and output vectors are given by ˜x(k) = vert[x̃i(k)]i , u(k) = vert[ui(k)]i andy(k) =

vert[yi(k)]i , respectively. Note thatA is Schur-stable and(A,Bu,Cy,Dyu)∈S(G,Px,Py,Pu) wherePx =

(4,4,1), Pu = (1,1,1) andPy = (1,1,1). By calculating the transfer function matrix corresponding to

P̃, we can see thattf(P̃) = P(z).

8.2 Example for designing networked controllers over zero-delay networks

Using this example we explain the concepts and algorithms discussed in Chapter3 and Chapter4 to

solve aH2 networked control problem. We consider a strictly causal interaction of 3 sub-systems over

a zero-delay directed communication network represented by a unit-weight digraphG given in Fig.3.2.

Let the 3 sub-systems{Pi}i∈{1,2,3} of the form (4.1) be expressed in their state-space representation as
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given below

P1 :





















x1(k+1)

z1(k)

y1(k)

η21(k)





















=









































0.1 0.8 0.1 0 0.1 0.4 0

0.3 −0.5 0.1 0 0.1 0 0.2

0.2 0.1 0 1 0 0.3 0.2

0 0 0 0 1 0 0

0.2 0.1 0 1 0 0.3 0.2

1 0 0 0 0 0 0

0 1 0 0 0 0 0





























































x1(k)

w1(k)

u1(k)

ζ12(k)





















,

P2 :



























x2(k+1)

z2(k)

y2(k)

η12(k)

η32(k)



























=























































−0.6 1.3 0 0 0 1.4 0

0.5 0.2 0.2 0 0.2 0 −0.3

0.1 0.1 0 1 0 0.1 −0.3

0 0 0 0 1 0 0

0.1 0.1 0 1 0 0.1 −0.3

1 0 0 0 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0











































































x2(k)

w2(k)

u2(k)

ζ21(k)





















,

P3 :













x3(k+1)

z3(k)

y3(k)













=



























1.2 0 0.4 0 0.4 0.1 0

0.3 0.4 0 0 0 0 −0.8

0.1 0.4 0 1 0 −0.1 0.3

0 0 0 0 1 0 0

0.1 0.4 0 1 0 −0.1 0.3















































x3(k)

w3(k)

u3(k)

ζ32(k)





















,

(8.4)

and the zero-delay network interconnection in (4.2) is given by

ζ12(k) = η12(k), ζ21(k) = η21(k), ζ32(k) = η32(k).

By interconnecting the three sub-systems over the network,we get the networked systemP with
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following state-space matrices

A =

































0.1 0.8 0.4 0 0 0

0.3 −0.5 0 0.2 0 0

1.4 0 −0.6 1.3 0 0

0 −0.3 0.5 0.2 0 0

0 0 0.1 0 1.2 0

0 0 0 −0.8 0.3 0.4

































,

Bu =

































0.1 0 0

0.1 0 0

0 0 0

0 0.2 0

0 0 0.4

0 0 0

































, Cy =













0.2 0.1 0.3 0.2 0 0

0.1 −0.3 0.4 0.1 0 0

0 0 −0.1 0.3 0.1 0.4













.

The other state-space matrices can also be obtained from thesub-system dynamics and the network

interconnection. Note thatP is an unstable system sinceA has eigenvalues outside the unit disc. For

comparison purpose, an optimal internally stabilizing centralized controllerKcentral is computed using

standard techniques and the corresponding optimal cost is given by‖lft (P,Kcentral)‖2 = 25.6203. Fol-

lowing Lemma7 and Lemma8, we obtain following matricesF andL so thatA+BuF andA+LCy are

Schur stable.

F =













−4.4408 2.1392 −0.0012 −3.5507 0 0

2.9020 −1.9631 −4.7372 1.5855 0 0

0 0 −0.4561 0.4437 −3.0970 −0.1546













,

L =

































−1.9583 0 0

−0.3447 0 0

0 11.1308 0

0 −3.8995 0

0 0 −1.3975

0 0 −0.1351

































.
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Note thatF is structured according toA(G) while L is block-diagonal. We can construct the following

observer-based networked controller

Knom =







A+BuF +LCy −L

F 0






(8.5)

using the matricesF andL. Note thatKnom is a stabilizing controller that is a strictly causal interaction

overG. Also, note thatKnom is a full-order controller. In this example, this nominal networked controller

is unstable and gives a performance cost of‖lft (P,Knom)‖2 = 157.7915.

In order to find an optimal networked controller, we first use Theorem2 to parameterize the set of

all internally stabilizing networked controllers for the given networked plant based on the matricesF

andL. Then following the formulation given in Section4.3, we obtain the optimal internally stabilizing

networked controllerKopt that is a strictly causal interaction over the given network. The performance

cost
∥

∥lft (P,Kopt)
∥

∥

2 for this optimal controller is 54.2338. The optimal controller is not presented in

the thesis due to its large order but we shall present some information about the controller to better

appreciate the optimal solution.

First, the order of the optimal networked controller is 62 where the sub-systemsK1, K2 andK3 have

order 22, 24 and 16, respectively. Note that in the case of centralized problem, the optimal controller

can be full-order, i.e. it has order 6. The networked controller has larger order to compensate for the

lack of full communication. The optimal cost provided by ouroptimal networked controller can also be

used as a bound in designing sub-optimal reduced-order networked controllers.

Second, the optimal networked controller is non-minimal but is stabilizable and detectable such

that the closed-loop system is internally stable. Last but not least, we note that the optimal networked

controller is unstable with two unstable poles at 1.1629. So, if we had used a transfer function based

approach (for example, [8]) to design an optimal stabilizing controller with a structured transfer function

matrix, it is not known how to realize the unstable transfer function matrix as a stabilizing networked

controller over the given network. In essence, we provide anoptimal stabilizing networked controller

and also provide a methodology to implement it over the givennetwork even when the stabilizing

controller is unstable.

For the same plant, using the results from Chapter5, we also found a full-order internally stabilizing

networked controllerKfull that is a strictly causal interaction over the givenG. The full-order controller
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Kfull = (AK ,BK ,CK ,DK) is given by the following state-space matrices

AK =

































0.3723 −0.0925 7.847 −2.169 0 0

1.707 −0.972 3.992 −0.4528 0 0

1.676 −1.164 −19.14 6.447 0 0

5.281 −3.675 59.69 20.12 0 0

0 0 −2.787 1.056 −5.641 0

0 0 3.217 −1.216 7.391 7.107

































,

BK =

































−0.1409 0 0

0.1209 0 0

0 0.3864 0

0 1.225 0

0 0 −0.0513

0 0 0.0582

































, DK =













−5.48 0 0

0 −26.12 0

0 0 1.092













,

CK =













−2.813 1.224 −76.91 19.84 0 0

−77.33 55.54 911.4 −300.1 0 0

0 0 68.49 −21.67 160.6 137.3













and the performance cost‖lft (P,Kfull )‖2 for this full-order controller is 95.9587.

8.3 Example for designing networked controllers over general delay networks

Using this example we explain the concepts and algorithms discussed in Chapter7 to solve aH2 net-

worked control problem in the general delay network case. Weconsider a strictly causal interaction of

3 sub-systems over a directed delay network represented by aweighted digraphG given in Fig.3.1. Let

the 3 sub-systems{Pi}i∈{1,2,3} be expressed in their state-space representation given by (8.4) interacting

over a delay network interconnection given by

ζ12(k) = η12(k−1), ζ21(k) = η21(k), ζ32(k) = η32(k).
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By interconnecting the three sub-systems over the network,we get the dynamics of the networked

systemP with following state-space matrices

A(q) =

































0.1 0.8 0.4q 0 0 0

0.3 −0.5 0 0.2q 0 0

1.4 0 −0.6 1.3 0 0

0 −0.3 0.5 0.2 0 0

0 0 0.1 0 1.2 0

0 0 0 −0.8 0.3 0.4

































,

Bu =

































0.1 0 0

0.1 0 0

0 0 0

0 0.2 0

0 0 0.4

0 0 0

































, Cy(q) =













0.2 0.1 0.3q 0.2q 0 0

0.1 −0.3 0.4 0.1 0 0

0 0 −0.1 0.3 0.1 0.4













.

The other state-space matrices can also be obtained from thesub-system dynamics and the network

interconnection. Note thatP is an unstable system since(zI−A(z−1)) looses rank whenz = 1.2.

For comparison purpose, an optimal internally stabilizingcentralized controllerKcentral is computed

using standard techniques and the corresponding optimal cost is given by‖lft (P,Kcentral)‖2 = 3.5035.

Following the procedure described in Section7.3.1, we obtain the following matricesF(q) andL so

that(zI−A(z−1)−BuF(z−1)) and(zI−A(z−1)−LCy(z−1)) have full-rank for allz∈ C\D̄.

F =













−1.6363 1.6519 −1.245q −1.458q 0 0

2.9983 0.0202 −3.9174 1.8998 0 0

0 0 −0.4093 0.4682 −3.0687 −0.1586













,
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L =

































−1.5276 0 0

0.1740 0 0

0 11.2678 0

0 −5.8945 0

0 0 −1.4985

0 0 −0.1939

































.

Note thatF(q) is structured according toA(G,q) while L is block-diagonal. We can construct the

following observer-based networked controller

Knom =







A(q)+BuF(q)+LCy(q) −L

F(q) 0






(8.6)

using the matricesF(q) andL. Note thatKnom is a stabilizing controller that is a strictly causal inter-

action overG. Also note thatKnom is a full-order controller. In this example, this nominal networked

controller is unstable and gives a performance cost of‖lft (P,Knom)‖2 = 130.4313.

In order to find an optimal networked controller, we first use Theorem7 to parameterize the set

of all internally stabilizing networked controllers for the given networked plant based on the matrices

F(q) and L. Then following the formulation given in Section7.4, we obtain the optimal internally

stabilizing networked controllerKopt that is a strictly causal interaction over the given delay network.

The performance cost
∥

∥lft (P,Kopt)
∥

∥

2 for this optimal controller is 3.5266. In this example, theKopt was

found to be asymptotically stable but with a large order.
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CHAPTER 9. Conclusions

In this thesis, we studied the class of networked systems that are made of finite-dimensional, linear,

time-invariant, causal, discrete-time sub-systems interacting over a noiseless, pure-delay, discrete-time

network, all sharing the same clock. We first studied the casewhen the discrete-time network has no

delays. We showed that the networked systems built on a zero-delay network can be represented using

systems with structured state-space or transfer function matrices, in general. But in the case when

the networked systems are constrained to be stabilizable and detectable, we point out that structured

transfer function matrices cannot be used to represent the networked systems due to the problem of

network realizability. “Given an unstable structured transfer function matrix, it is not known how to

realize it as a stabilizable and detectable networked system over a given network.”

Next, we studied the networked control problems where the controller is required to be a networked

system that internally stabilizes a given plant. In this scenario, we observed that transfer function based

approaches are not suitable to solve the networked control problems since the stabilizing controllers

obtained as solutions to such approaches can in general be unstable. And due to the network realizability

problem, such solutions may not be realizable over the givennetwork while assuring stabilizability and

detectability. Instead, we used the relationship between networked systems and structured systems

to parameterize all internally stabilizing networked controllers using the state-space form of Youla-

Kučera parameterization. Thus, synthesizing optimal networked controllers is shown to be a constrained

convex optimization problem. In the case ofH2 networked control, the constrained convex optimization

problem is reduced to an unconstrained convex optimizationproblem which can easily be solved using

standard techniques.

Since the optimal networked controllers can possibly have alarge order, we also provide methodolo-

gies to design full-order internally stabilizing networked controllers by extending the results of [24]. We

also solved the networked estimation problem by posing it asan equivalent networked control problem
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and use the results obtained for networked control. Next, westudied the networked systems when the

network interaction can have any arbitrary delay structure. Using the shift delay operator used in [9], we

extended the framework developed for systems over zero-delay networks to systems over any general

delay networks. Finally, we provided numerical examples todescribe the main results of the thesis.

We thus studied the problem of designing networked controllers for networked plants when both

plant and controller are constrained to be on the same network. Since the transfer function approaches

can not address the network realizability problem, we proposed a state-space approach for parameter-

izing all internally stabilizing networked controllers that allows one to synthesize optimal networked

controllers that stabilize the given plant and can be expressed as sub-systems interacting over the given

network.

9.1 Directions for future work

As future research work, it would be interesting to study thenetwork realization problem in more

detail. One can also look at model reduction techniques thatassure stabilizability and detectability while

reducing the order of a networked system. Presently, the networked controller design procedure pro-

posed in this thesis is centralized, i.e. the controller canbe designed only with the complete knowledge

about the networked plant model. One can study distributed desing and synthesis techniques that allow

more scalability to the networked controller design problem. Since the framework used for networked

controller design is based on classical Youla parameterization, many of the results in control theory that

are based on Youla parameterization may be extended to networked control.
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